Source file src/crypto/internal/fips140/rsa/rsa.go

     1  // Copyright 2024 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package rsa
     6  
     7  import (
     8  	"bytes"
     9  	"crypto/internal/fips140"
    10  	"crypto/internal/fips140/bigmod"
    11  	"errors"
    12  )
    13  
    14  type PublicKey struct {
    15  	N *bigmod.Modulus
    16  	E int
    17  }
    18  
    19  // Size returns the modulus size in bytes. Raw signatures and ciphertexts
    20  // for or by this public key will have the same size.
    21  func (pub *PublicKey) Size() int {
    22  	return (pub.N.BitLen() + 7) / 8
    23  }
    24  
    25  type PrivateKey struct {
    26  	// pub has already been checked with checkPublicKey.
    27  	pub PublicKey
    28  	d   *bigmod.Nat
    29  	// The following values are not set for deprecated multi-prime keys.
    30  	//
    31  	// Since they are always set for keys in FIPS mode, for SP 800-56B Rev. 2
    32  	// purposes we always use the Chinese Remainder Theorem (CRT) format.
    33  	p, q *bigmod.Modulus // p × q = n
    34  	// dP and dQ are used as exponents, so we store them as big-endian byte
    35  	// slices to be passed to [bigmod.Nat.Exp].
    36  	dP   []byte      // d mod (p - 1)
    37  	dQ   []byte      // d mod (q - 1)
    38  	qInv *bigmod.Nat // qInv = q⁻¹ mod p
    39  	// fipsApproved is false if this key does not comply with FIPS 186-5 or
    40  	// SP 800-56B Rev. 2.
    41  	fipsApproved bool
    42  }
    43  
    44  func (priv *PrivateKey) PublicKey() *PublicKey {
    45  	return &priv.pub
    46  }
    47  
    48  // NewPrivateKey creates a new RSA private key from the given parameters.
    49  //
    50  // All values are in big-endian byte slice format, and may have leading zeros
    51  // or be shorter if leading zeroes were trimmed.
    52  func NewPrivateKey(N []byte, e int, d, P, Q []byte) (*PrivateKey, error) {
    53  	n, err := bigmod.NewModulus(N)
    54  	if err != nil {
    55  		return nil, err
    56  	}
    57  	p, err := bigmod.NewModulus(P)
    58  	if err != nil {
    59  		return nil, err
    60  	}
    61  	q, err := bigmod.NewModulus(Q)
    62  	if err != nil {
    63  		return nil, err
    64  	}
    65  	dN, err := bigmod.NewNat().SetBytes(d, n)
    66  	if err != nil {
    67  		return nil, err
    68  	}
    69  	return newPrivateKey(n, e, dN, p, q)
    70  }
    71  
    72  func newPrivateKey(n *bigmod.Modulus, e int, d *bigmod.Nat, p, q *bigmod.Modulus) (*PrivateKey, error) {
    73  	pMinusOne := p.Nat().SubOne(p)
    74  	pMinusOneMod, err := bigmod.NewModulus(pMinusOne.Bytes(p))
    75  	if err != nil {
    76  		return nil, err
    77  	}
    78  	dP := bigmod.NewNat().Mod(d, pMinusOneMod).Bytes(pMinusOneMod)
    79  
    80  	qMinusOne := q.Nat().SubOne(q)
    81  	qMinusOneMod, err := bigmod.NewModulus(qMinusOne.Bytes(q))
    82  	if err != nil {
    83  		return nil, err
    84  	}
    85  	dQ := bigmod.NewNat().Mod(d, qMinusOneMod).Bytes(qMinusOneMod)
    86  
    87  	// Constant-time modular inversion with prime modulus by Fermat's Little
    88  	// Theorem: qInv = q⁻¹ mod p = q^(p-2) mod p.
    89  	if p.Nat().IsOdd() == 0 {
    90  		// [bigmod.Nat.Exp] requires an odd modulus.
    91  		return nil, errors.New("crypto/rsa: p is even")
    92  	}
    93  	pMinusTwo := p.Nat().SubOne(p).SubOne(p).Bytes(p)
    94  	qInv := bigmod.NewNat().Mod(q.Nat(), p)
    95  	qInv.Exp(qInv, pMinusTwo, p)
    96  
    97  	pk := &PrivateKey{
    98  		pub: PublicKey{
    99  			N: n, E: e,
   100  		},
   101  		d: d, p: p, q: q,
   102  		dP: dP, dQ: dQ, qInv: qInv,
   103  	}
   104  	if err := checkPrivateKey(pk); err != nil {
   105  		return nil, err
   106  	}
   107  	return pk, nil
   108  }
   109  
   110  // NewPrivateKeyWithPrecomputation creates a new RSA private key from the given
   111  // parameters, which include precomputed CRT values.
   112  func NewPrivateKeyWithPrecomputation(N []byte, e int, d, P, Q, dP, dQ, qInv []byte) (*PrivateKey, error) {
   113  	n, err := bigmod.NewModulus(N)
   114  	if err != nil {
   115  		return nil, err
   116  	}
   117  	p, err := bigmod.NewModulus(P)
   118  	if err != nil {
   119  		return nil, err
   120  	}
   121  	q, err := bigmod.NewModulus(Q)
   122  	if err != nil {
   123  		return nil, err
   124  	}
   125  	dN, err := bigmod.NewNat().SetBytes(d, n)
   126  	if err != nil {
   127  		return nil, err
   128  	}
   129  	qInvNat, err := bigmod.NewNat().SetBytes(qInv, p)
   130  	if err != nil {
   131  		return nil, err
   132  	}
   133  
   134  	pk := &PrivateKey{
   135  		pub: PublicKey{
   136  			N: n, E: e,
   137  		},
   138  		d: dN, p: p, q: q,
   139  		dP: dP, dQ: dQ, qInv: qInvNat,
   140  	}
   141  	if err := checkPrivateKey(pk); err != nil {
   142  		return nil, err
   143  	}
   144  	return pk, nil
   145  }
   146  
   147  // NewPrivateKeyWithoutCRT creates a new RSA private key from the given parameters.
   148  //
   149  // This is meant for deprecated multi-prime keys, and is not FIPS 140 compliant.
   150  func NewPrivateKeyWithoutCRT(N []byte, e int, d []byte) (*PrivateKey, error) {
   151  	n, err := bigmod.NewModulus(N)
   152  	if err != nil {
   153  		return nil, err
   154  	}
   155  	dN, err := bigmod.NewNat().SetBytes(d, n)
   156  	if err != nil {
   157  		return nil, err
   158  	}
   159  	pk := &PrivateKey{
   160  		pub: PublicKey{
   161  			N: n, E: e,
   162  		},
   163  		d: dN,
   164  	}
   165  	if err := checkPrivateKey(pk); err != nil {
   166  		return nil, err
   167  	}
   168  	return pk, nil
   169  }
   170  
   171  // Export returns the key parameters in big-endian byte slice format.
   172  //
   173  // P, Q, dP, dQ, and qInv may be nil if the key was created with
   174  // NewPrivateKeyWithoutCRT.
   175  func (priv *PrivateKey) Export() (N []byte, e int, d, P, Q, dP, dQ, qInv []byte) {
   176  	N = priv.pub.N.Nat().Bytes(priv.pub.N)
   177  	e = priv.pub.E
   178  	d = priv.d.Bytes(priv.pub.N)
   179  	if priv.dP == nil {
   180  		return
   181  	}
   182  	P = priv.p.Nat().Bytes(priv.p)
   183  	Q = priv.q.Nat().Bytes(priv.q)
   184  	dP = bytes.Clone(priv.dP)
   185  	dQ = bytes.Clone(priv.dQ)
   186  	qInv = priv.qInv.Bytes(priv.p)
   187  	return
   188  }
   189  
   190  // checkPrivateKey is called by the NewPrivateKey and GenerateKey functions, and
   191  // is allowed to modify priv.fipsApproved.
   192  func checkPrivateKey(priv *PrivateKey) error {
   193  	priv.fipsApproved = true
   194  
   195  	if fipsApproved, err := checkPublicKey(&priv.pub); err != nil {
   196  		return err
   197  	} else if !fipsApproved {
   198  		priv.fipsApproved = false
   199  	}
   200  
   201  	if priv.dP == nil {
   202  		// Legacy and deprecated multi-prime keys.
   203  		priv.fipsApproved = false
   204  		return nil
   205  	}
   206  
   207  	N := priv.pub.N
   208  	p := priv.p
   209  	q := priv.q
   210  
   211  	// FIPS 186-5, Section 5.1 requires "that p and q be of the same bit length."
   212  	if p.BitLen() != q.BitLen() {
   213  		priv.fipsApproved = false
   214  	}
   215  
   216  	// Check that pq ≡ 1 mod N (and that p < N and q < N).
   217  	pN := bigmod.NewNat().ExpandFor(N)
   218  	if _, err := pN.SetBytes(p.Nat().Bytes(p), N); err != nil {
   219  		return errors.New("crypto/rsa: invalid prime")
   220  	}
   221  	qN := bigmod.NewNat().ExpandFor(N)
   222  	if _, err := qN.SetBytes(q.Nat().Bytes(q), N); err != nil {
   223  		return errors.New("crypto/rsa: invalid prime")
   224  	}
   225  	if pN.Mul(qN, N).IsZero() != 1 {
   226  		return errors.New("crypto/rsa: p * q != n")
   227  	}
   228  
   229  	// Check that de ≡ 1 mod p-1, and de ≡ 1 mod q-1.
   230  	//
   231  	// This implies that e is coprime to each p-1 as e has a multiplicative
   232  	// inverse. Therefore e is coprime to lcm(p-1,q-1) = λ(N).
   233  	// It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 mod p. Thus a^de ≡ a
   234  	// mod n for all a coprime to n, as required.
   235  	//
   236  	// This checks dP, dQ, and e. We don't check d because it is not actually
   237  	// used in the RSA private key operation.
   238  	pMinus1, err := bigmod.NewModulus(p.Nat().SubOne(p).Bytes(p))
   239  	if err != nil {
   240  		return errors.New("crypto/rsa: invalid prime")
   241  	}
   242  	dP, err := bigmod.NewNat().SetBytes(priv.dP, pMinus1)
   243  	if err != nil {
   244  		return errors.New("crypto/rsa: invalid CRT exponent")
   245  	}
   246  	de := bigmod.NewNat()
   247  	de.SetUint(uint(priv.pub.E)).ExpandFor(pMinus1)
   248  	de.Mul(dP, pMinus1)
   249  	if de.IsOne() != 1 {
   250  		return errors.New("crypto/rsa: invalid CRT exponent")
   251  	}
   252  
   253  	qMinus1, err := bigmod.NewModulus(q.Nat().SubOne(q).Bytes(q))
   254  	if err != nil {
   255  		return errors.New("crypto/rsa: invalid prime")
   256  	}
   257  	dQ, err := bigmod.NewNat().SetBytes(priv.dQ, qMinus1)
   258  	if err != nil {
   259  		return errors.New("crypto/rsa: invalid CRT exponent")
   260  	}
   261  	de.SetUint(uint(priv.pub.E)).ExpandFor(qMinus1)
   262  	de.Mul(dQ, qMinus1)
   263  	if de.IsOne() != 1 {
   264  		return errors.New("crypto/rsa: invalid CRT exponent")
   265  	}
   266  
   267  	// Check that qInv * q ≡ 1 mod p.
   268  	qP, err := bigmod.NewNat().SetOverflowingBytes(q.Nat().Bytes(q), p)
   269  	if err != nil {
   270  		// q >= 2^⌈log2(p)⌉
   271  		qP = bigmod.NewNat().Mod(q.Nat(), p)
   272  	}
   273  	if qP.Mul(priv.qInv, p).IsOne() != 1 {
   274  		return errors.New("crypto/rsa: invalid CRT coefficient")
   275  	}
   276  
   277  	// Check that |p - q| > 2^(nlen/2 - 100).
   278  	//
   279  	// If p and q are very close to each other, then N=pq can be trivially
   280  	// factored using Fermat's factorization method. Broken RSA implementations
   281  	// do generate such keys. See Hanno Böck, Fermat Factorization in the Wild,
   282  	// https://eprint.iacr.org/2023/026.pdf.
   283  	diff := bigmod.NewNat()
   284  	if qP, err := bigmod.NewNat().SetBytes(q.Nat().Bytes(q), p); err != nil {
   285  		// q > p
   286  		pQ, err := bigmod.NewNat().SetBytes(p.Nat().Bytes(p), q)
   287  		if err != nil {
   288  			return errors.New("crypto/rsa: p == q")
   289  		}
   290  		// diff = 0 - p mod q = q - p
   291  		diff.ExpandFor(q).Sub(pQ, q)
   292  	} else {
   293  		// p > q
   294  		// diff = 0 - q mod p = p - q
   295  		diff.ExpandFor(p).Sub(qP, p)
   296  	}
   297  	// A tiny bit of leakage is acceptable because it's not adaptive, an
   298  	// attacker only learns the magnitude of p - q.
   299  	if diff.BitLenVarTime() <= N.BitLen()/2-100 {
   300  		return errors.New("crypto/rsa: |p - q| too small")
   301  	}
   302  
   303  	// Check that d > 2^(nlen/2).
   304  	//
   305  	// See section 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
   306  	// for more details about attacks on small d values.
   307  	//
   308  	// Likewise, the leakage of the magnitude of d is not adaptive.
   309  	if priv.d.BitLenVarTime() <= N.BitLen()/2 {
   310  		return errors.New("crypto/rsa: d too small")
   311  	}
   312  
   313  	return nil
   314  }
   315  
   316  func checkPublicKey(pub *PublicKey) (fipsApproved bool, err error) {
   317  	fipsApproved = true
   318  	if pub.N == nil {
   319  		return false, errors.New("crypto/rsa: missing public modulus")
   320  	}
   321  	if pub.N.Nat().IsOdd() == 0 {
   322  		return false, errors.New("crypto/rsa: public modulus is even")
   323  	}
   324  	// FIPS 186-5, Section 5.1: "This standard specifies the use of a modulus
   325  	// whose bit length is an even integer and greater than or equal to 2048
   326  	// bits."
   327  	if pub.N.BitLen() < 2048 {
   328  		fipsApproved = false
   329  	}
   330  	if pub.N.BitLen()%2 == 1 {
   331  		fipsApproved = false
   332  	}
   333  	if pub.E < 2 {
   334  		return false, errors.New("crypto/rsa: public exponent too small or negative")
   335  	}
   336  	// e needs to be coprime with p-1 and q-1, since it must be invertible
   337  	// modulo λ(pq). Since p and q are prime, this means e needs to be odd.
   338  	if pub.E&1 == 0 {
   339  		return false, errors.New("crypto/rsa: public exponent is even")
   340  	}
   341  	// FIPS 186-5, Section 5.5(e): "The exponent e shall be an odd, positive
   342  	// integer such that 2¹⁶ < e < 2²⁵⁶."
   343  	if pub.E <= 1<<16 {
   344  		fipsApproved = false
   345  	}
   346  	// We require pub.E to fit into a 32-bit integer so that we
   347  	// do not have different behavior depending on whether
   348  	// int is 32 or 64 bits. See also
   349  	// https://www.imperialviolet.org/2012/03/16/rsae.html.
   350  	if pub.E > 1<<31-1 {
   351  		return false, errors.New("crypto/rsa: public exponent too large")
   352  	}
   353  	return fipsApproved, nil
   354  }
   355  
   356  // Encrypt performs the RSA public key operation.
   357  func Encrypt(pub *PublicKey, plaintext []byte) ([]byte, error) {
   358  	fips140.RecordNonApproved()
   359  	if _, err := checkPublicKey(pub); err != nil {
   360  		return nil, err
   361  	}
   362  	return encrypt(pub, plaintext)
   363  }
   364  
   365  func encrypt(pub *PublicKey, plaintext []byte) ([]byte, error) {
   366  	m, err := bigmod.NewNat().SetBytes(plaintext, pub.N)
   367  	if err != nil {
   368  		return nil, err
   369  	}
   370  	return bigmod.NewNat().ExpShortVarTime(m, uint(pub.E), pub.N).Bytes(pub.N), nil
   371  }
   372  
   373  var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA key size")
   374  var ErrDecryption = errors.New("crypto/rsa: decryption error")
   375  var ErrVerification = errors.New("crypto/rsa: verification error")
   376  
   377  const withCheck = true
   378  const noCheck = false
   379  
   380  // DecryptWithoutCheck performs the RSA private key operation.
   381  func DecryptWithoutCheck(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
   382  	fips140.RecordNonApproved()
   383  	return decrypt(priv, ciphertext, noCheck)
   384  }
   385  
   386  // DecryptWithCheck performs the RSA private key operation and checks the
   387  // result to defend against errors in the CRT computation.
   388  func DecryptWithCheck(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
   389  	fips140.RecordNonApproved()
   390  	return decrypt(priv, ciphertext, withCheck)
   391  }
   392  
   393  // decrypt performs an RSA decryption of ciphertext into out. If check is true,
   394  // m^e is calculated and compared with ciphertext, in order to defend against
   395  // errors in the CRT computation.
   396  func decrypt(priv *PrivateKey, ciphertext []byte, check bool) ([]byte, error) {
   397  	if !priv.fipsApproved {
   398  		fips140.RecordNonApproved()
   399  	}
   400  
   401  	var m *bigmod.Nat
   402  	N, E := priv.pub.N, priv.pub.E
   403  
   404  	c, err := bigmod.NewNat().SetBytes(ciphertext, N)
   405  	if err != nil {
   406  		return nil, ErrDecryption
   407  	}
   408  
   409  	if priv.dP == nil {
   410  		// Legacy codepath for deprecated multi-prime keys.
   411  		fips140.RecordNonApproved()
   412  		m = bigmod.NewNat().Exp(c, priv.d.Bytes(N), N)
   413  
   414  	} else {
   415  		P, Q := priv.p, priv.q
   416  		t0 := bigmod.NewNat()
   417  		// m = c ^ Dp mod p
   418  		m = bigmod.NewNat().Exp(t0.Mod(c, P), priv.dP, P)
   419  		// m2 = c ^ Dq mod q
   420  		m2 := bigmod.NewNat().Exp(t0.Mod(c, Q), priv.dQ, Q)
   421  		// m = m - m2 mod p
   422  		m.Sub(t0.Mod(m2, P), P)
   423  		// m = m * Qinv mod p
   424  		m.Mul(priv.qInv, P)
   425  		// m = m * q mod N
   426  		m.ExpandFor(N).Mul(t0.Mod(Q.Nat(), N), N)
   427  		// m = m + m2 mod N
   428  		m.Add(m2.ExpandFor(N), N)
   429  	}
   430  
   431  	if check {
   432  		c1 := bigmod.NewNat().ExpShortVarTime(m, uint(E), N)
   433  		if c1.Equal(c) != 1 {
   434  			return nil, ErrDecryption
   435  		}
   436  	}
   437  
   438  	return m.Bytes(N), nil
   439  }
   440  

View as plain text