Source file src/cmd/internal/obj/dwarf.go

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Writes dwarf information to object files.
     6  
     7  package obj
     8  
     9  import (
    10  	"cmd/internal/dwarf"
    11  	"cmd/internal/objabi"
    12  	"cmd/internal/src"
    13  	"fmt"
    14  	"sort"
    15  	"sync"
    16  )
    17  
    18  // Generate a sequence of opcodes that is as short as possible.
    19  // See section 6.2.5
    20  const (
    21  	LINE_BASE   = -4
    22  	LINE_RANGE  = 10
    23  	PC_RANGE    = (255 - OPCODE_BASE) / LINE_RANGE
    24  	OPCODE_BASE = 11
    25  )
    26  
    27  // generateDebugLinesSymbol fills the debug lines symbol of a given function.
    28  //
    29  // It's worth noting that this function doesn't generate the full debug_lines
    30  // DWARF section, saving that for the linker. This function just generates the
    31  // state machine part of debug_lines. The full table is generated by the
    32  // linker.  Also, we use the file numbers from the full package (not just the
    33  // function in question) when generating the state machine. We do this so we
    34  // don't have to do a fixup on the indices when writing the full section.
    35  func (ctxt *Link) generateDebugLinesSymbol(s, lines *LSym) {
    36  	dctxt := dwCtxt{ctxt}
    37  
    38  	// Emit a LNE_set_address extended opcode, so as to establish the
    39  	// starting text address of this function.
    40  	dctxt.AddUint8(lines, 0)
    41  	dwarf.Uleb128put(dctxt, lines, 1+int64(ctxt.Arch.PtrSize))
    42  	dctxt.AddUint8(lines, dwarf.DW_LNE_set_address)
    43  	dctxt.AddAddress(lines, s, 0)
    44  
    45  	// Set up the debug_lines state machine to the default values
    46  	// we expect at the start of a new sequence.
    47  	stmt := true
    48  	line := int64(1)
    49  	pc := s.Func().Text.Pc
    50  	var lastpc int64 // last PC written to line table, not last PC in func
    51  	fileIndex := 1
    52  	prologue, wrotePrologue := false, false
    53  	// Walk the progs, generating the DWARF table.
    54  	for p := s.Func().Text; p != nil; p = p.Link {
    55  		prologue = prologue || (p.Pos.Xlogue() == src.PosPrologueEnd)
    56  		// If we're not at a real instruction, keep looping!
    57  		if p.Pos.Line() == 0 || (p.Link != nil && p.Link.Pc == p.Pc) {
    58  			continue
    59  		}
    60  		newStmt := p.Pos.IsStmt() != src.PosNotStmt
    61  		newFileIndex, newLine := ctxt.getFileIndexAndLine(p.Pos)
    62  		newFileIndex++ // 1 indexing for the table
    63  
    64  		// Output debug info.
    65  		wrote := false
    66  		if newFileIndex != fileIndex {
    67  			dctxt.AddUint8(lines, dwarf.DW_LNS_set_file)
    68  			dwarf.Uleb128put(dctxt, lines, int64(newFileIndex))
    69  			fileIndex = newFileIndex
    70  			wrote = true
    71  		}
    72  		if prologue && !wrotePrologue {
    73  			dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_set_prologue_end))
    74  			wrotePrologue = true
    75  			wrote = true
    76  		}
    77  		if stmt != newStmt {
    78  			dctxt.AddUint8(lines, uint8(dwarf.DW_LNS_negate_stmt))
    79  			stmt = newStmt
    80  			wrote = true
    81  		}
    82  
    83  		if line != int64(newLine) || wrote {
    84  			pcdelta := p.Pc - pc
    85  			lastpc = p.Pc
    86  			putpclcdelta(ctxt, dctxt, lines, uint64(pcdelta), int64(newLine)-line)
    87  			line, pc = int64(newLine), p.Pc
    88  		}
    89  	}
    90  
    91  	// Because these symbols will be concatenated together by the
    92  	// linker, we need to reset the state machine that controls the
    93  	// debug symbols. Do this using an end-of-sequence operator.
    94  	//
    95  	// Note: at one point in time, Delve did not support multiple end
    96  	// sequence ops within a compilation unit (bug for this:
    97  	// https://github.com/go-delve/delve/issues/1694), however the bug
    98  	// has since been fixed (Oct 2019).
    99  	//
   100  	// Issue 38192: the DWARF standard specifies that when you issue
   101  	// an end-sequence op, the PC value should be one past the last
   102  	// text address in the translation unit, so apply a delta to the
   103  	// text address before the end sequence op. If this isn't done,
   104  	// GDB will assign a line number of zero the last row in the line
   105  	// table, which we don't want.
   106  	lastlen := uint64(s.Size - (lastpc - s.Func().Text.Pc))
   107  	dctxt.AddUint8(lines, dwarf.DW_LNS_advance_pc)
   108  	dwarf.Uleb128put(dctxt, lines, int64(lastlen))
   109  	dctxt.AddUint8(lines, 0) // start extended opcode
   110  	dwarf.Uleb128put(dctxt, lines, 1)
   111  	dctxt.AddUint8(lines, dwarf.DW_LNE_end_sequence)
   112  }
   113  
   114  func putpclcdelta(linkctxt *Link, dctxt dwCtxt, s *LSym, deltaPC uint64, deltaLC int64) {
   115  	// Choose a special opcode that minimizes the number of bytes needed to
   116  	// encode the remaining PC delta and LC delta.
   117  	var opcode int64
   118  	if deltaLC < LINE_BASE {
   119  		if deltaPC >= PC_RANGE {
   120  			opcode = OPCODE_BASE + (LINE_RANGE * PC_RANGE)
   121  		} else {
   122  			opcode = OPCODE_BASE + (LINE_RANGE * int64(deltaPC))
   123  		}
   124  	} else if deltaLC < LINE_BASE+LINE_RANGE {
   125  		if deltaPC >= PC_RANGE {
   126  			opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * PC_RANGE)
   127  			if opcode > 255 {
   128  				opcode -= LINE_RANGE
   129  			}
   130  		} else {
   131  			opcode = OPCODE_BASE + (deltaLC - LINE_BASE) + (LINE_RANGE * int64(deltaPC))
   132  		}
   133  	} else {
   134  		if deltaPC <= PC_RANGE {
   135  			opcode = OPCODE_BASE + (LINE_RANGE - 1) + (LINE_RANGE * int64(deltaPC))
   136  			if opcode > 255 {
   137  				opcode = 255
   138  			}
   139  		} else {
   140  			// Use opcode 249 (pc+=23, lc+=5) or 255 (pc+=24, lc+=1).
   141  			//
   142  			// Let x=deltaPC-PC_RANGE.  If we use opcode 255, x will be the remaining
   143  			// deltaPC that we need to encode separately before emitting 255.  If we
   144  			// use opcode 249, we will need to encode x+1.  If x+1 takes one more
   145  			// byte to encode than x, then we use opcode 255.
   146  			//
   147  			// In all other cases x and x+1 take the same number of bytes to encode,
   148  			// so we use opcode 249, which may save us a byte in encoding deltaLC,
   149  			// for similar reasons.
   150  			switch deltaPC - PC_RANGE {
   151  			// PC_RANGE is the largest deltaPC we can encode in one byte, using
   152  			// DW_LNS_const_add_pc.
   153  			//
   154  			// (1<<16)-1 is the largest deltaPC we can encode in three bytes, using
   155  			// DW_LNS_fixed_advance_pc.
   156  			//
   157  			// (1<<(7n))-1 is the largest deltaPC we can encode in n+1 bytes for
   158  			// n=1,3,4,5,..., using DW_LNS_advance_pc.
   159  			case PC_RANGE, (1 << 7) - 1, (1 << 16) - 1, (1 << 21) - 1, (1 << 28) - 1,
   160  				(1 << 35) - 1, (1 << 42) - 1, (1 << 49) - 1, (1 << 56) - 1, (1 << 63) - 1:
   161  				opcode = 255
   162  			default:
   163  				opcode = OPCODE_BASE + LINE_RANGE*PC_RANGE - 1 // 249
   164  			}
   165  		}
   166  	}
   167  	if opcode < OPCODE_BASE || opcode > 255 {
   168  		panic(fmt.Sprintf("produced invalid special opcode %d", opcode))
   169  	}
   170  
   171  	// Subtract from deltaPC and deltaLC the amounts that the opcode will add.
   172  	deltaPC -= uint64((opcode - OPCODE_BASE) / LINE_RANGE)
   173  	deltaLC -= (opcode-OPCODE_BASE)%LINE_RANGE + LINE_BASE
   174  
   175  	// Encode deltaPC.
   176  	if deltaPC != 0 {
   177  		if deltaPC <= PC_RANGE {
   178  			// Adjust the opcode so that we can use the 1-byte DW_LNS_const_add_pc
   179  			// instruction.
   180  			opcode -= LINE_RANGE * int64(PC_RANGE-deltaPC)
   181  			if opcode < OPCODE_BASE {
   182  				panic(fmt.Sprintf("produced invalid special opcode %d", opcode))
   183  			}
   184  			dctxt.AddUint8(s, dwarf.DW_LNS_const_add_pc)
   185  		} else if (1<<14) <= deltaPC && deltaPC < (1<<16) {
   186  			dctxt.AddUint8(s, dwarf.DW_LNS_fixed_advance_pc)
   187  			dctxt.AddUint16(s, uint16(deltaPC))
   188  		} else {
   189  			dctxt.AddUint8(s, dwarf.DW_LNS_advance_pc)
   190  			dwarf.Uleb128put(dctxt, s, int64(deltaPC))
   191  		}
   192  	}
   193  
   194  	// Encode deltaLC.
   195  	if deltaLC != 0 {
   196  		dctxt.AddUint8(s, dwarf.DW_LNS_advance_line)
   197  		dwarf.Sleb128put(dctxt, s, deltaLC)
   198  	}
   199  
   200  	// Output the special opcode.
   201  	dctxt.AddUint8(s, uint8(opcode))
   202  }
   203  
   204  // implement dwarf.Context
   205  type dwCtxt struct{ *Link }
   206  
   207  func (c dwCtxt) PtrSize() int {
   208  	return c.Arch.PtrSize
   209  }
   210  func (c dwCtxt) Size(s dwarf.Sym) int64 {
   211  	return s.(*LSym).Size
   212  }
   213  func (c dwCtxt) AddInt(s dwarf.Sym, size int, i int64) {
   214  	ls := s.(*LSym)
   215  	ls.WriteInt(c.Link, ls.Size, size, i)
   216  }
   217  func (c dwCtxt) AddUint16(s dwarf.Sym, i uint16) {
   218  	c.AddInt(s, 2, int64(i))
   219  }
   220  func (c dwCtxt) AddUint8(s dwarf.Sym, i uint8) {
   221  	b := []byte{byte(i)}
   222  	c.AddBytes(s, b)
   223  }
   224  func (c dwCtxt) AddBytes(s dwarf.Sym, b []byte) {
   225  	ls := s.(*LSym)
   226  	ls.WriteBytes(c.Link, ls.Size, b)
   227  }
   228  func (c dwCtxt) AddString(s dwarf.Sym, v string) {
   229  	ls := s.(*LSym)
   230  	ls.WriteString(c.Link, ls.Size, len(v), v)
   231  	ls.WriteInt(c.Link, ls.Size, 1, 0)
   232  }
   233  func (c dwCtxt) AddAddress(s dwarf.Sym, data interface{}, value int64) {
   234  	ls := s.(*LSym)
   235  	size := c.PtrSize()
   236  	if data != nil {
   237  		rsym := data.(*LSym)
   238  		ls.WriteAddr(c.Link, ls.Size, size, rsym, value)
   239  	} else {
   240  		ls.WriteInt(c.Link, ls.Size, size, value)
   241  	}
   242  }
   243  func (c dwCtxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) {
   244  	ls := s.(*LSym)
   245  	rsym := data.(*LSym)
   246  	ls.WriteCURelativeAddr(c.Link, ls.Size, rsym, value)
   247  }
   248  func (c dwCtxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) {
   249  	panic("should be used only in the linker")
   250  }
   251  func (c dwCtxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) {
   252  	size := 4
   253  	if isDwarf64(c.Link) {
   254  		size = 8
   255  	}
   256  
   257  	ls := s.(*LSym)
   258  	rsym := t.(*LSym)
   259  	ls.WriteAddr(c.Link, ls.Size, size, rsym, ofs)
   260  	r := &ls.R[len(ls.R)-1]
   261  	r.Type = objabi.R_DWARFSECREF
   262  }
   263  
   264  func (c dwCtxt) CurrentOffset(s dwarf.Sym) int64 {
   265  	ls := s.(*LSym)
   266  	return ls.Size
   267  }
   268  
   269  // Here "from" is a symbol corresponding to an inlined or concrete
   270  // function, "to" is the symbol for the corresponding abstract
   271  // function, and "dclIdx" is the index of the symbol of interest with
   272  // respect to the Dcl slice of the original pre-optimization version
   273  // of the inlined function.
   274  func (c dwCtxt) RecordDclReference(from dwarf.Sym, to dwarf.Sym, dclIdx int, inlIndex int) {
   275  	ls := from.(*LSym)
   276  	tls := to.(*LSym)
   277  	ridx := len(ls.R) - 1
   278  	c.Link.DwFixups.ReferenceChildDIE(ls, ridx, tls, dclIdx, inlIndex)
   279  }
   280  
   281  func (c dwCtxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) {
   282  	ls := s.(*LSym)
   283  	c.Link.DwFixups.RegisterChildDIEOffsets(ls, vars, offsets)
   284  }
   285  
   286  func (c dwCtxt) Logf(format string, args ...interface{}) {
   287  	c.Link.Logf(format, args...)
   288  }
   289  
   290  func isDwarf64(ctxt *Link) bool {
   291  	return ctxt.Headtype == objabi.Haix
   292  }
   293  
   294  func (ctxt *Link) dwarfSym(s *LSym) (dwarfInfoSym, dwarfLocSym, dwarfRangesSym, dwarfAbsFnSym, dwarfDebugLines *LSym) {
   295  	if s.Type != objabi.STEXT {
   296  		ctxt.Diag("dwarfSym of non-TEXT %v", s)
   297  	}
   298  	fn := s.Func()
   299  	if fn.dwarfInfoSym == nil {
   300  		fn.dwarfInfoSym = &LSym{
   301  			Type: objabi.SDWARFFCN,
   302  		}
   303  		if ctxt.Flag_locationlists {
   304  			fn.dwarfLocSym = &LSym{
   305  				Type: objabi.SDWARFLOC,
   306  			}
   307  		}
   308  		fn.dwarfRangesSym = &LSym{
   309  			Type: objabi.SDWARFRANGE,
   310  		}
   311  		fn.dwarfDebugLinesSym = &LSym{
   312  			Type: objabi.SDWARFLINES,
   313  		}
   314  		if s.WasInlined() {
   315  			fn.dwarfAbsFnSym = ctxt.DwFixups.AbsFuncDwarfSym(s)
   316  		}
   317  	}
   318  	return fn.dwarfInfoSym, fn.dwarfLocSym, fn.dwarfRangesSym, fn.dwarfAbsFnSym, fn.dwarfDebugLinesSym
   319  }
   320  
   321  // textPos returns the source position of the first instruction (prog)
   322  // of the specified function.
   323  func textPos(fn *LSym) src.XPos {
   324  	if p := fn.Func().Text; p != nil {
   325  		return p.Pos
   326  	}
   327  	return src.NoXPos
   328  }
   329  
   330  // populateDWARF fills in the DWARF Debugging Information Entries for
   331  // TEXT symbol 's'. The various DWARF symbols must already have been
   332  // initialized in InitTextSym.
   333  func (ctxt *Link) populateDWARF(curfn Func, s *LSym) {
   334  	myimportpath := ctxt.Pkgpath
   335  	if myimportpath == "" {
   336  		return
   337  	}
   338  
   339  	info, loc, ranges, absfunc, lines := ctxt.dwarfSym(s)
   340  	if info.Size != 0 {
   341  		ctxt.Diag("makeFuncDebugEntry double process %v", s)
   342  	}
   343  	var scopes []dwarf.Scope
   344  	var inlcalls dwarf.InlCalls
   345  	if ctxt.DebugInfo != nil {
   346  		scopes, inlcalls = ctxt.DebugInfo(s, info, curfn)
   347  	}
   348  	var err error
   349  	dwctxt := dwCtxt{ctxt}
   350  	startPos := ctxt.InnermostPos(textPos(s))
   351  	if !startPos.IsKnown() || startPos.RelLine() != uint(s.Func().StartLine) {
   352  		panic("bad startPos")
   353  	}
   354  	fnstate := &dwarf.FnState{
   355  		Name:          s.Name,
   356  		Info:          info,
   357  		Loc:           loc,
   358  		Ranges:        ranges,
   359  		Absfn:         absfunc,
   360  		StartPC:       s,
   361  		Size:          s.Size,
   362  		StartPos:      startPos,
   363  		External:      !s.Static(),
   364  		Scopes:        scopes,
   365  		InlCalls:      inlcalls,
   366  		UseBASEntries: ctxt.UseBASEntries,
   367  	}
   368  	if absfunc != nil {
   369  		err = dwarf.PutAbstractFunc(dwctxt, fnstate)
   370  		if err != nil {
   371  			ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
   372  		}
   373  		err = dwarf.PutConcreteFunc(dwctxt, fnstate, s.Wrapper())
   374  	} else {
   375  		err = dwarf.PutDefaultFunc(dwctxt, fnstate, s.Wrapper())
   376  	}
   377  	if err != nil {
   378  		ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
   379  	}
   380  	// Fill in the debug lines symbol.
   381  	ctxt.generateDebugLinesSymbol(s, lines)
   382  }
   383  
   384  // DwarfIntConst creates a link symbol for an integer constant with the
   385  // given name, type and value.
   386  func (ctxt *Link) DwarfIntConst(name, typename string, val int64) {
   387  	myimportpath := ctxt.Pkgpath
   388  	if myimportpath == "" {
   389  		return
   390  	}
   391  	s := ctxt.LookupInit(dwarf.ConstInfoPrefix+myimportpath, func(s *LSym) {
   392  		s.Type = objabi.SDWARFCONST
   393  		ctxt.Data = append(ctxt.Data, s)
   394  	})
   395  	dwarf.PutIntConst(dwCtxt{ctxt}, s, ctxt.Lookup(dwarf.InfoPrefix+typename), myimportpath+"."+name, val)
   396  }
   397  
   398  // DwarfGlobal creates a link symbol containing a DWARF entry for
   399  // a global variable.
   400  func (ctxt *Link) DwarfGlobal(typename string, varSym *LSym) {
   401  	myimportpath := ctxt.Pkgpath
   402  	if myimportpath == "" || varSym.Local() {
   403  		return
   404  	}
   405  	varname := varSym.Name
   406  	dieSym := &LSym{
   407  		Type: objabi.SDWARFVAR,
   408  	}
   409  	varSym.NewVarInfo().dwarfInfoSym = dieSym
   410  	ctxt.Data = append(ctxt.Data, dieSym)
   411  	typeSym := ctxt.Lookup(dwarf.InfoPrefix + typename)
   412  	dwarf.PutGlobal(dwCtxt{ctxt}, dieSym, typeSym, varSym, varname)
   413  }
   414  
   415  func (ctxt *Link) DwarfAbstractFunc(curfn Func, s *LSym) {
   416  	absfn := ctxt.DwFixups.AbsFuncDwarfSym(s)
   417  	if absfn.Size != 0 {
   418  		ctxt.Diag("internal error: DwarfAbstractFunc double process %v", s)
   419  	}
   420  	if s.Func() == nil {
   421  		s.NewFuncInfo()
   422  	}
   423  	scopes, _ := ctxt.DebugInfo(s, absfn, curfn)
   424  	dwctxt := dwCtxt{ctxt}
   425  	fnstate := dwarf.FnState{
   426  		Name:          s.Name,
   427  		Info:          absfn,
   428  		Absfn:         absfn,
   429  		StartPos:      ctxt.InnermostPos(curfn.Pos()),
   430  		External:      !s.Static(),
   431  		Scopes:        scopes,
   432  		UseBASEntries: ctxt.UseBASEntries,
   433  	}
   434  	if err := dwarf.PutAbstractFunc(dwctxt, &fnstate); err != nil {
   435  		ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
   436  	}
   437  }
   438  
   439  // This table is designed to aid in the creation of references between
   440  // DWARF subprogram DIEs.
   441  //
   442  // In most cases when one DWARF DIE has to refer to another DWARF DIE,
   443  // the target of the reference has an LSym, which makes it easy to use
   444  // the existing relocation mechanism. For DWARF inlined routine DIEs,
   445  // however, the subprogram DIE has to refer to a child
   446  // parameter/variable DIE of the abstract subprogram. This child DIE
   447  // doesn't have an LSym, and also of interest is the fact that when
   448  // DWARF generation is happening for inlined function F within caller
   449  // G, it's possible that DWARF generation hasn't happened yet for F,
   450  // so there is no way to know the offset of a child DIE within F's
   451  // abstract function. Making matters more complex, each inlined
   452  // instance of F may refer to a subset of the original F's variables
   453  // (depending on what happens with optimization, some vars may be
   454  // eliminated).
   455  //
   456  // The fixup table below helps overcome this hurdle. At the point
   457  // where a parameter/variable reference is made (via a call to
   458  // "ReferenceChildDIE"), a fixup record is generate that records
   459  // the relocation that is targeting that child variable. At a later
   460  // point when the abstract function DIE is emitted, there will be
   461  // a call to "RegisterChildDIEOffsets", at which point the offsets
   462  // needed to apply fixups are captured. Finally, once the parallel
   463  // portion of the compilation is done, fixups can actually be applied
   464  // during the "Finalize" method (this can't be done during the
   465  // parallel portion of the compile due to the possibility of data
   466  // races).
   467  //
   468  // This table is also used to record the "precursor" function node for
   469  // each function that is the target of an inline -- child DIE references
   470  // have to be made with respect to the original pre-optimization
   471  // version of the function (to allow for the fact that each inlined
   472  // body may be optimized differently).
   473  type DwarfFixupTable struct {
   474  	ctxt      *Link
   475  	mu        sync.Mutex
   476  	symtab    map[*LSym]int // maps abstract fn LSYM to index in svec
   477  	svec      []symFixups
   478  	precursor map[*LSym]fnState // maps fn Lsym to precursor Node, absfn sym
   479  }
   480  
   481  type symFixups struct {
   482  	fixups   []relFixup
   483  	doffsets []declOffset
   484  	inlIndex int32
   485  	defseen  bool
   486  }
   487  
   488  type declOffset struct {
   489  	// Index of variable within DCL list of pre-optimization function
   490  	dclIdx int32
   491  	// Offset of var's child DIE with respect to containing subprogram DIE
   492  	offset int32
   493  }
   494  
   495  type relFixup struct {
   496  	refsym *LSym
   497  	relidx int32
   498  	dclidx int32
   499  }
   500  
   501  type fnState struct {
   502  	// precursor function
   503  	precursor Func
   504  	// abstract function symbol
   505  	absfn *LSym
   506  }
   507  
   508  func NewDwarfFixupTable(ctxt *Link) *DwarfFixupTable {
   509  	return &DwarfFixupTable{
   510  		ctxt:      ctxt,
   511  		symtab:    make(map[*LSym]int),
   512  		precursor: make(map[*LSym]fnState),
   513  	}
   514  }
   515  
   516  func (ft *DwarfFixupTable) GetPrecursorFunc(s *LSym) Func {
   517  	if fnstate, found := ft.precursor[s]; found {
   518  		return fnstate.precursor
   519  	}
   520  	return nil
   521  }
   522  
   523  func (ft *DwarfFixupTable) SetPrecursorFunc(s *LSym, fn Func) {
   524  	if _, found := ft.precursor[s]; found {
   525  		ft.ctxt.Diag("internal error: DwarfFixupTable.SetPrecursorFunc double call on %v", s)
   526  	}
   527  
   528  	// initialize abstract function symbol now. This is done here so
   529  	// as to avoid data races later on during the parallel portion of
   530  	// the back end.
   531  	absfn := ft.ctxt.LookupDerived(s, dwarf.InfoPrefix+s.Name+dwarf.AbstractFuncSuffix)
   532  	absfn.Set(AttrDuplicateOK, true)
   533  	absfn.Type = objabi.SDWARFABSFCN
   534  	ft.ctxt.Data = append(ft.ctxt.Data, absfn)
   535  
   536  	// In the case of "late" inlining (inlines that happen during
   537  	// wrapper generation as opposed to the main inlining phase) it's
   538  	// possible that we didn't cache the abstract function sym for the
   539  	// text symbol -- do so now if needed. See issue 38068.
   540  	if fn := s.Func(); fn != nil && fn.dwarfAbsFnSym == nil {
   541  		fn.dwarfAbsFnSym = absfn
   542  	}
   543  
   544  	ft.precursor[s] = fnState{precursor: fn, absfn: absfn}
   545  }
   546  
   547  // Make a note of a child DIE reference: relocation 'ridx' within symbol 's'
   548  // is targeting child 'c' of DIE with symbol 'tgt'.
   549  func (ft *DwarfFixupTable) ReferenceChildDIE(s *LSym, ridx int, tgt *LSym, dclidx int, inlIndex int) {
   550  	// Protect against concurrent access if multiple backend workers
   551  	ft.mu.Lock()
   552  	defer ft.mu.Unlock()
   553  
   554  	// Create entry for symbol if not already present.
   555  	idx, found := ft.symtab[tgt]
   556  	if !found {
   557  		ft.svec = append(ft.svec, symFixups{inlIndex: int32(inlIndex)})
   558  		idx = len(ft.svec) - 1
   559  		ft.symtab[tgt] = idx
   560  	}
   561  
   562  	// Do we have child DIE offsets available? If so, then apply them,
   563  	// otherwise create a fixup record.
   564  	sf := &ft.svec[idx]
   565  	if len(sf.doffsets) > 0 {
   566  		found := false
   567  		for _, do := range sf.doffsets {
   568  			if do.dclIdx == int32(dclidx) {
   569  				off := do.offset
   570  				s.R[ridx].Add += int64(off)
   571  				found = true
   572  				break
   573  			}
   574  		}
   575  		if !found {
   576  			ft.ctxt.Diag("internal error: DwarfFixupTable.ReferenceChildDIE unable to locate child DIE offset for dclIdx=%d src=%v tgt=%v", dclidx, s, tgt)
   577  		}
   578  	} else {
   579  		sf.fixups = append(sf.fixups, relFixup{s, int32(ridx), int32(dclidx)})
   580  	}
   581  }
   582  
   583  // Called once DWARF generation is complete for a given abstract function,
   584  // whose children might have been referenced via a call above. Stores
   585  // the offsets for any child DIEs (vars, params) so that they can be
   586  // consumed later in on DwarfFixupTable.Finalize, which applies any
   587  // outstanding fixups.
   588  func (ft *DwarfFixupTable) RegisterChildDIEOffsets(s *LSym, vars []*dwarf.Var, coffsets []int32) {
   589  	// Length of these two slices should agree
   590  	if len(vars) != len(coffsets) {
   591  		ft.ctxt.Diag("internal error: RegisterChildDIEOffsets vars/offsets length mismatch")
   592  		return
   593  	}
   594  
   595  	// Generate the slice of declOffset's based in vars/coffsets
   596  	doffsets := make([]declOffset, len(coffsets))
   597  	for i := range coffsets {
   598  		doffsets[i].dclIdx = vars[i].ChildIndex
   599  		doffsets[i].offset = coffsets[i]
   600  	}
   601  
   602  	ft.mu.Lock()
   603  	defer ft.mu.Unlock()
   604  
   605  	// Store offsets for this symbol.
   606  	idx, found := ft.symtab[s]
   607  	if !found {
   608  		sf := symFixups{inlIndex: -1, defseen: true, doffsets: doffsets}
   609  		ft.svec = append(ft.svec, sf)
   610  		ft.symtab[s] = len(ft.svec) - 1
   611  	} else {
   612  		sf := &ft.svec[idx]
   613  		sf.doffsets = doffsets
   614  		sf.defseen = true
   615  	}
   616  }
   617  
   618  func (ft *DwarfFixupTable) processFixups(slot int, s *LSym) {
   619  	sf := &ft.svec[slot]
   620  	for _, f := range sf.fixups {
   621  		dfound := false
   622  		for _, doffset := range sf.doffsets {
   623  			if doffset.dclIdx == f.dclidx {
   624  				f.refsym.R[f.relidx].Add += int64(doffset.offset)
   625  				dfound = true
   626  				break
   627  			}
   628  		}
   629  		if !dfound {
   630  			ft.ctxt.Diag("internal error: DwarfFixupTable has orphaned fixup on %v targeting %v relidx=%d dclidx=%d", f.refsym, s, f.relidx, f.dclidx)
   631  		}
   632  	}
   633  }
   634  
   635  // return the LSym corresponding to the 'abstract subprogram' DWARF
   636  // info entry for a function.
   637  func (ft *DwarfFixupTable) AbsFuncDwarfSym(fnsym *LSym) *LSym {
   638  	// Protect against concurrent access if multiple backend workers
   639  	ft.mu.Lock()
   640  	defer ft.mu.Unlock()
   641  
   642  	if fnstate, found := ft.precursor[fnsym]; found {
   643  		return fnstate.absfn
   644  	}
   645  	ft.ctxt.Diag("internal error: AbsFuncDwarfSym requested for %v, not seen during inlining", fnsym)
   646  	return nil
   647  }
   648  
   649  // Called after all functions have been compiled; the main job of this
   650  // function is to identify cases where there are outstanding fixups.
   651  // This scenario crops up when we have references to variables of an
   652  // inlined routine, but that routine is defined in some other package.
   653  // This helper walks through and locate these fixups, then invokes a
   654  // helper to create an abstract subprogram DIE for each one.
   655  func (ft *DwarfFixupTable) Finalize(myimportpath string, trace bool) {
   656  	if trace {
   657  		ft.ctxt.Logf("DwarfFixupTable.Finalize invoked for %s\n", myimportpath)
   658  	}
   659  
   660  	// Collect up the keys from the precursor map, then sort the
   661  	// resulting list (don't want to rely on map ordering here).
   662  	fns := make([]*LSym, len(ft.precursor))
   663  	idx := 0
   664  	for fn := range ft.precursor {
   665  		fns[idx] = fn
   666  		idx++
   667  	}
   668  	sort.Sort(BySymName(fns))
   669  
   670  	// Should not be called during parallel portion of compilation.
   671  	if ft.ctxt.InParallel {
   672  		ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize call during parallel backend")
   673  	}
   674  
   675  	// Generate any missing abstract functions.
   676  	for _, s := range fns {
   677  		absfn := ft.AbsFuncDwarfSym(s)
   678  		slot, found := ft.symtab[absfn]
   679  		if !found || !ft.svec[slot].defseen {
   680  			ft.ctxt.GenAbstractFunc(s)
   681  		}
   682  	}
   683  
   684  	// Apply fixups.
   685  	for _, s := range fns {
   686  		absfn := ft.AbsFuncDwarfSym(s)
   687  		slot, found := ft.symtab[absfn]
   688  		if !found {
   689  			ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize orphan abstract function for %v", s)
   690  		} else {
   691  			ft.processFixups(slot, s)
   692  		}
   693  	}
   694  }
   695  
   696  type BySymName []*LSym
   697  
   698  func (s BySymName) Len() int           { return len(s) }
   699  func (s BySymName) Less(i, j int) bool { return s[i].Name < s[j].Name }
   700  func (s BySymName) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   701  

View as plain text