Text file src/cmd/compile/internal/ssa/_gen/PPC64.rules

     1  // Copyright 2016 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // GOPPC64 values indicate power8, power9, etc.
     6  // That means the code is compiled for that target,
     7  // and will not run on earlier targets.
     8  //
     9  (Add(Ptr|64|32|16|8) ...) => (ADD ...)
    10  (Add64F ...) => (FADD ...)
    11  (Add32F ...) => (FADDS ...)
    12  
    13  (Sub(Ptr|64|32|16|8) ...) => (SUB ...)
    14  (Sub32F ...) => (FSUBS ...)
    15  (Sub64F ...) => (FSUB ...)
    16  
    17  (Min(32|64)F x y) && buildcfg.GOPPC64 >= 9 => (XSMINJDP x y)
    18  (Max(32|64)F x y) && buildcfg.GOPPC64 >= 9 => (XSMAXJDP x y)
    19  
    20  // Combine 64 bit integer multiply and adds
    21  (ADD l:(MULLD x y) z) && buildcfg.GOPPC64 >= 9 && l.Uses == 1 && clobber(l) => (MADDLD x y z)
    22  
    23  (Mod16 x y) => (Mod32 (SignExt16to32 x) (SignExt16to32 y))
    24  (Mod16u x y) => (Mod32u (ZeroExt16to32 x) (ZeroExt16to32 y))
    25  (Mod8 x y) => (Mod32 (SignExt8to32 x) (SignExt8to32 y))
    26  (Mod8u x y) => (Mod32u (ZeroExt8to32 x) (ZeroExt8to32 y))
    27  (Mod64 x y) && buildcfg.GOPPC64 >=9 => (MODSD x y)
    28  (Mod64 x y) && buildcfg.GOPPC64 <=8 => (SUB x (MULLD y (DIVD x y)))
    29  (Mod64u x y) && buildcfg.GOPPC64 >= 9 => (MODUD x y)
    30  (Mod64u x y) && buildcfg.GOPPC64 <= 8 => (SUB x (MULLD y (DIVDU x y)))
    31  (Mod32 x y) && buildcfg.GOPPC64 >= 9 => (MODSW x y)
    32  (Mod32 x y) && buildcfg.GOPPC64 <= 8 => (SUB x (MULLW y (DIVW x y)))
    33  (Mod32u x y) && buildcfg.GOPPC64 >= 9 => (MODUW x y)
    34  (Mod32u x y) && buildcfg.GOPPC64 <= 8 => (SUB x (MULLW y (DIVWU x y)))
    35  
    36  // (x + y) / 2 with x>=y => (x - y) / 2 + y
    37  (Avg64u <t> x y) => (ADD (SRDconst <t> (SUB <t> x y) [1]) y)
    38  
    39  (Mul64 ...) => (MULLD ...)
    40  (Mul(32|16|8) ...) => (MULLW ...)
    41  (Select0 (Mul64uhilo x y)) => (MULHDU x y)
    42  (Select1 (Mul64uhilo x y)) => (MULLD x y)
    43  
    44  (Div64 [false] x y) => (DIVD x y)
    45  (Div64u ...) => (DIVDU ...)
    46  (Div32 [false] x y) => (DIVW x y)
    47  (Div32u ...) => (DIVWU ...)
    48  (Div16 [false]  x y) => (DIVW  (SignExt16to32 x) (SignExt16to32 y))
    49  (Div16u x y) => (DIVWU (ZeroExt16to32 x) (ZeroExt16to32 y))
    50  (Div8 x y) => (DIVW  (SignExt8to32 x) (SignExt8to32 y))
    51  (Div8u x y) => (DIVWU (ZeroExt8to32 x) (ZeroExt8to32 y))
    52  
    53  (Hmul(64|64u|32|32u) ...) => (MULH(D|DU|W|WU) ...)
    54  
    55  (Mul(32|64)F ...) => ((FMULS|FMUL) ...)
    56  
    57  (Div(32|64)F ...) => ((FDIVS|FDIV) ...)
    58  
    59  // Lowering float <=> int
    60  (Cvt32to(32|64)F x) => ((FCFIDS|FCFID) (MTVSRD (SignExt32to64 x)))
    61  (Cvt64to(32|64)F x) => ((FCFIDS|FCFID) (MTVSRD x))
    62  
    63  (Cvt32Fto(32|64) x) => (MFVSRD (FCTI(W|D)Z x))
    64  (Cvt64Fto(32|64) x) => (MFVSRD (FCTI(W|D)Z x))
    65  
    66  (Cvt32Fto64F ...) => (Copy ...) // Note v will have the wrong type for patterns dependent on Float32/Float64
    67  (Cvt64Fto32F ...) => (FRSP ...)
    68  
    69  (CvtBoolToUint8 ...) => (Copy ...)
    70  
    71  (Round(32|64)F ...) => (LoweredRound(32|64)F ...)
    72  
    73  (Sqrt ...) => (FSQRT ...)
    74  (Sqrt32 ...) => (FSQRTS ...)
    75  (Floor ...) => (FFLOOR ...)
    76  (Ceil ...) => (FCEIL ...)
    77  (Trunc ...) => (FTRUNC ...)
    78  (Round ...) => (FROUND ...)
    79  (Copysign x y) => (FCPSGN y x)
    80  (Abs ...) => (FABS ...)
    81  (FMA ...) => (FMADD ...)
    82  
    83  // Lowering extension
    84  // Note: we always extend to 64 bits even though some ops don't need that many result bits.
    85  (SignExt8to(16|32|64) ...) => (MOVBreg ...)
    86  (SignExt16to(32|64) ...) => (MOVHreg ...)
    87  (SignExt32to64 ...) => (MOVWreg ...)
    88  
    89  (ZeroExt8to(16|32|64) ...) => (MOVBZreg ...)
    90  (ZeroExt16to(32|64) ...) => (MOVHZreg ...)
    91  (ZeroExt32to64 ...) => (MOVWZreg ...)
    92  
    93  (Trunc(16|32|64)to8 <t> x) && t.IsSigned() => (MOVBreg x)
    94  (Trunc(16|32|64)to8  x) => (MOVBZreg x)
    95  (Trunc(32|64)to16 <t> x) && t.IsSigned() => (MOVHreg x)
    96  (Trunc(32|64)to16 x) => (MOVHZreg x)
    97  (Trunc64to32 <t> x) && t.IsSigned() => (MOVWreg x)
    98  (Trunc64to32 x) => (MOVWZreg x)
    99  
   100  // Lowering constants
   101  (Const(64|32|16|8) [val]) => (MOVDconst [int64(val)])
   102  (Const(32|64)F ...) => (FMOV(S|D)const ...)
   103  (ConstNil) => (MOVDconst [0])
   104  (ConstBool [t]) => (MOVDconst [b2i(t)])
   105  
   106  // Carrying addition.
   107  (Select0 (Add64carry x y c)) =>            (Select0 <typ.UInt64> (ADDE x y (Select1 <typ.UInt64> (ADDCconst c [-1]))))
   108  (Select1 (Add64carry x y c)) => (ADDZEzero (Select1 <typ.UInt64> (ADDE x y (Select1 <typ.UInt64> (ADDCconst c [-1])))))
   109  // Fold initial carry bit if 0.
   110  (ADDE x y (Select1 <typ.UInt64> (ADDCconst (MOVDconst [0]) [-1]))) => (ADDC x y)
   111  // Fold transfer of CA -> GPR -> CA. Note 2 uses when feeding into a chained Add64carry.
   112  (Select1 (ADDCconst n:(ADDZEzero x) [-1])) && n.Uses <= 2 => x
   113  (ADDE (MOVDconst [0]) y c) => (ADDZE y c)
   114  
   115  // Borrowing subtraction.
   116  (Select0 (Sub64borrow x y c)) =>                 (Select0 <typ.UInt64> (SUBE x y (Select1 <typ.UInt64> (SUBCconst c [0]))))
   117  (Select1 (Sub64borrow x y c)) => (NEG (SUBZEzero (Select1 <typ.UInt64> (SUBE x y (Select1 <typ.UInt64> (SUBCconst c [0]))))))
   118  // Fold initial borrow bit if 0.
   119  (SUBE x y (Select1 <typ.UInt64> (SUBCconst (MOVDconst [0]) [0]))) => (SUBC x y)
   120  // Fold transfer of CA -> GPR -> CA. Note 2 uses when feeding into a chained Sub64borrow.
   121  (Select1 (SUBCconst n:(NEG (SUBZEzero x)) [0])) && n.Uses <= 2 => x
   122  
   123  // Constant folding
   124  (FABS (FMOVDconst [x])) => (FMOVDconst [math.Abs(x)])
   125  (FSQRT (FMOVDconst [x])) && x >= 0 => (FMOVDconst [math.Sqrt(x)])
   126  (FFLOOR (FMOVDconst [x])) => (FMOVDconst [math.Floor(x)])
   127  (FCEIL (FMOVDconst [x])) => (FMOVDconst [math.Ceil(x)])
   128  (FTRUNC (FMOVDconst [x])) => (FMOVDconst [math.Trunc(x)])
   129  
   130  // Rotates
   131  (RotateLeft8 <t> x (MOVDconst [c])) => (Or8 (Lsh8x64 <t> x (MOVDconst [c&7])) (Rsh8Ux64 <t> x (MOVDconst [-c&7])))
   132  (RotateLeft16 <t> x (MOVDconst [c])) => (Or16 (Lsh16x64 <t> x (MOVDconst [c&15])) (Rsh16Ux64 <t> x (MOVDconst [-c&15])))
   133  (RotateLeft(32|64) ...) => ((ROTLW|ROTL) ...)
   134  
   135  // Constant rotate generation
   136  (ROTLW  x (MOVDconst [c])) => (ROTLWconst  x [c&31])
   137  (ROTL   x (MOVDconst [c])) => (ROTLconst   x [c&63])
   138  
   139  // Combine rotate and mask operations
   140  (ANDconst [m] (ROTLWconst [r] x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,m,32)] x)
   141  (AND (MOVDconst [m]) (ROTLWconst [r] x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,m,32)] x)
   142  (ANDconst [m] (ROTLW x r)) && isPPC64WordRotateMask(m) => (RLWNM [encodePPC64RotateMask(0,m,32)] x r)
   143  (AND (MOVDconst [m]) (ROTLW x r)) && isPPC64WordRotateMask(m) => (RLWNM [encodePPC64RotateMask(0,m,32)] x r)
   144  
   145  // Note, any rotated word bitmask is still a valid word bitmask.
   146  (ROTLWconst [r] (AND (MOVDconst [m]) x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,rotateLeft32(m,r),32)] x)
   147  (ROTLWconst [r] (ANDconst [m] x)) && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(r,rotateLeft32(m,r),32)] x)
   148  
   149  (ANDconst [m] (SRWconst x [s])) && mergePPC64RShiftMask(m,s,32) == 0 => (MOVDconst [0])
   150  (ANDconst [m] (SRWconst x [s])) && mergePPC64AndSrwi(m,s) != 0 => (RLWINM [mergePPC64AndSrwi(m,s)] x)
   151  (AND (MOVDconst [m]) (SRWconst x [s])) && mergePPC64RShiftMask(m,s,32) == 0 => (MOVDconst [0])
   152  (AND (MOVDconst [m]) (SRWconst x [s])) && mergePPC64AndSrwi(m,s) != 0 => (RLWINM [mergePPC64AndSrwi(m,s)] x)
   153  
   154  (SRWconst (ANDconst [m] x) [s]) && mergePPC64RShiftMask(m>>uint(s),s,32) == 0 => (MOVDconst [0])
   155  (SRWconst (ANDconst [m] x) [s]) && mergePPC64AndSrwi(m>>uint(s),s) != 0 => (RLWINM [mergePPC64AndSrwi(m>>uint(s),s)] x)
   156  (SRWconst (AND (MOVDconst [m]) x) [s]) && mergePPC64RShiftMask(m>>uint(s),s,32) == 0 => (MOVDconst [0])
   157  (SRWconst (AND (MOVDconst [m]) x) [s]) && mergePPC64AndSrwi(m>>uint(s),s) != 0 => (RLWINM [mergePPC64AndSrwi(m>>uint(s),s)] x)
   158  
   159  // Merge shift right + shift left and clear left (e.g for a table lookup)
   160  (CLRLSLDI [c] (SRWconst [s] x)) && mergePPC64ClrlsldiSrw(int64(c),s) != 0 => (RLWINM [mergePPC64ClrlsldiSrw(int64(c),s)] x)
   161  (CLRLSLDI [c] (SRDconst [s] x)) && mergePPC64ClrlsldiSrd(int64(c),s) != 0 => (RLWINM [mergePPC64ClrlsldiSrd(int64(c),s)] x)
   162  (SLDconst [l] (SRWconst [r] x)) && mergePPC64SldiSrw(l,r) != 0 => (RLWINM [mergePPC64SldiSrw(l,r)] x)
   163  // The following reduction shows up frequently too. e.g b[(x>>14)&0xFF]
   164  (CLRLSLDI [c] i:(RLWINM [s] x)) && mergePPC64ClrlsldiRlwinm(c,s) != 0 => (RLWINM [mergePPC64ClrlsldiRlwinm(c,s)] x)
   165  
   166  // large constant signed right shift, we leave the sign bit
   167  (Rsh64x64 x (MOVDconst [c])) && uint64(c) >= 64 => (SRADconst x [63])
   168  (Rsh32x64 x (MOVDconst [c])) && uint64(c) >= 32 => (SRAWconst x [63])
   169  (Rsh16x64 x (MOVDconst [c])) && uint64(c) >= 16 => (SRAWconst (SignExt16to32 x) [63])
   170  (Rsh8x64  x (MOVDconst [c])) && uint64(c) >= 8  => (SRAWconst (SignExt8to32  x) [63])
   171  
   172  // constant shifts
   173  ((Lsh64|Rsh64|Rsh64U)x64  x (MOVDconst [c])) && uint64(c) < 64 => (S(L|RA|R)Dconst x [c])
   174  ((Lsh32|Rsh32|Rsh32U)x64  x (MOVDconst [c])) && uint64(c) < 32 => (S(L|RA|R)Wconst x [c])
   175  ((Rsh16|Rsh16U)x64  x (MOVDconst [c])) && uint64(c) < 16 => (SR(AW|W)const ((Sign|Zero)Ext16to32 x) [c])
   176  (Lsh16x64  x (MOVDconst [c])) && uint64(c) < 16 => (SLWconst x [c])
   177  ((Rsh8|Rsh8U)x64  x (MOVDconst [c])) && uint64(c) < 8 => (SR(AW|W)const ((Sign|Zero)Ext8to32 x) [c])
   178  (Lsh8x64  x (MOVDconst [c])) && uint64(c) < 8 => (SLWconst x [c])
   179  
   180  // Lower bounded shifts first. No need to check shift value.
   181  (Lsh64x(64|32|16|8)  x y) && shiftIsBounded(v) => (SLD x y)
   182  (Lsh32x(64|32|16|8)  x y) && shiftIsBounded(v) => (SLW x y)
   183  (Lsh16x(64|32|16|8)  x y) && shiftIsBounded(v) => (SLD x y)
   184  (Lsh8x(64|32|16|8)   x y) && shiftIsBounded(v) => (SLD x y)
   185  (Rsh64Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRD x y)
   186  (Rsh32Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW x y)
   187  (Rsh16Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRD (MOVHZreg x) y)
   188  (Rsh8Ux(64|32|16|8)  x y) && shiftIsBounded(v) => (SRD (MOVBZreg x) y)
   189  (Rsh64x(64|32|16|8)  x y) && shiftIsBounded(v) => (SRAD x y)
   190  (Rsh32x(64|32|16|8)  x y) && shiftIsBounded(v) => (SRAW x y)
   191  (Rsh16x(64|32|16|8)  x y) && shiftIsBounded(v) => (SRAD (MOVHreg x) y)
   192  (Rsh8x(64|32|16|8)   x y) && shiftIsBounded(v) => (SRAD (MOVBreg x) y)
   193  
   194  // Unbounded shifts. Go shifts saturate to 0 or -1 when shifting beyond the number of
   195  // bits in a type, PPC64 shifts do not (see the ISA for details).
   196  //
   197  // Note, y is always non-negative.
   198  //
   199  // Note, ISELZ is intentionally not used in lower. Where possible, ISEL is converted to ISELZ in late lower
   200  // after all the ISEL folding rules have been exercised.
   201  
   202  ((Rsh64U|Lsh64)x64 <t> x y)  => (ISEL [0] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPUconst y [64]))
   203  ((Rsh64U|Lsh64)x32 <t> x y)  => (ISEL [0] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPWUconst y [64]))
   204  ((Rsh64U|Lsh64)x16 <t> x y)  => (ISEL [2] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0xFFC0] y)))
   205  ((Rsh64U|Lsh64)x8  <t> x y)  => (ISEL [2] (S(R|L)D <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0x00C0] y)))
   206  (Rsh64x(64|32)     <t> x y)  => (ISEL [0] (SRAD    <t> x y) (SRADconst <t> x [63]) (CMP(U|WU)const y [64]))
   207  (Rsh64x16          <t> x y)  => (ISEL [2] (SRAD    <t> x y) (SRADconst <t> x [63]) (CMPconst [0] (ANDconst [0xFFC0] y)))
   208  (Rsh64x8           <t> x y)  => (ISEL [2] (SRAD    <t> x y) (SRADconst <t> x [63]) (CMPconst [0] (ANDconst [0x00C0] y)))
   209  
   210  ((Rsh32U|Lsh32)x64 <t> x y)  => (ISEL [0] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPUconst y [32]))
   211  ((Rsh32U|Lsh32)x32 <t> x y)  => (ISEL [0] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPWUconst y [32]))
   212  ((Rsh32U|Lsh32)x16 <t> x y)  => (ISEL [2] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0xFFE0] y)))
   213  ((Rsh32U|Lsh32)x8  <t> x y)  => (ISEL [2] (S(R|L)W <t> x y) (MOVDconst [0])        (CMPconst [0] (ANDconst [0x00E0] y)))
   214  (Rsh32x(64|32)     <t> x y)  => (ISEL [0] (SRAW    <t> x y) (SRAWconst <t> x [31]) (CMP(U|WU)const y [32]))
   215  (Rsh32x16          <t> x y)  => (ISEL [2] (SRAW    <t> x y) (SRAWconst <t> x [31]) (CMPconst [0] (ANDconst [0xFFE0] y)))
   216  (Rsh32x8           <t> x y)  => (ISEL [2] (SRAW    <t> x y) (SRAWconst <t> x [31]) (CMPconst [0] (ANDconst [0x00E0] y)))
   217  
   218  ((Rsh16U|Lsh16)x64 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPUconst  y [16]))
   219  ((Rsh16U|Lsh16)x32 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPWUconst y [16]))
   220  ((Rsh16U|Lsh16)x16 <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPconst [0] (ANDconst [0xFFF0] y)))
   221  ((Rsh16U|Lsh16)x8  <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVHZreg x) y) (MOVDconst [0])                   (CMPconst [0] (ANDconst [0x00F0] y)))
   222  (Rsh16x(64|32)     <t> x y) => (ISEL [0] (SRAD     <t> (MOVHreg  x) y) (SRADconst <t>  (MOVHreg x) [15]) (CMP(U|WU)const  y [16]))
   223  (Rsh16x16          <t> x y) => (ISEL [2] (SRAD     <t> (MOVHreg  x) y) (SRADconst <t>  (MOVHreg x) [15]) (CMPconst [0] (ANDconst [0xFFF0] y)))
   224  (Rsh16x8           <t> x y) => (ISEL [2] (SRAD     <t> (MOVHreg  x) y) (SRADconst <t>  (MOVHreg x) [15]) (CMPconst [0] (ANDconst [0x00F0] y)))
   225  
   226  ((Rsh8U|Lsh8)x64 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPUconst  y [8]))
   227  ((Rsh8U|Lsh8)x32 <t> x y) => (ISEL [0] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPWUconst y [8]))
   228  ((Rsh8U|Lsh8)x16 <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPconst [0] (ANDconst [0xFFF8] y)))
   229  ((Rsh8U|Lsh8)x8  <t> x y) => (ISEL [2] (S(R|L)D  <t> (MOVBZreg x) y) (MOVDconst [0])                  (CMPconst [0] (ANDconst [0x00F8] y)))
   230  (Rsh8x(64|32)    <t> x y) => (ISEL [0] (SRAD     <t> (MOVBreg  x) y) (SRADconst <t>  (MOVBreg x) [7]) (CMP(U|WU)const  y [8]))
   231  (Rsh8x16         <t> x y) => (ISEL [2] (SRAD     <t> (MOVBreg  x) y) (SRADconst <t>  (MOVBreg x) [7]) (CMPconst [0] (ANDconst [0xFFF8] y)))
   232  (Rsh8x8          <t> x y) => (ISEL [2] (SRAD     <t> (MOVBreg  x) y) (SRADconst <t>  (MOVBreg x) [7]) (CMPconst [0] (ANDconst [0x00F8] y)))
   233  
   234  // Catch bounded shifts in situations like foo<<uint(shift&63) which might not be caught by the prove pass.
   235  (CMP(U|WU)const [d] (ANDconst z [c])) && uint64(d) > uint64(c) => (FlagLT)
   236  
   237  (ORN x (MOVDconst [-1])) => x
   238  
   239  (S(RAD|RD|LD) x (MOVDconst [c])) => (S(RAD|RD|LD)const [c&63 | (c>>6&1*63)] x)
   240  (S(RAW|RW|LW) x (MOVDconst [c])) => (S(RAW|RW|LW)const [c&31 | (c>>5&1*31)] x)
   241  
   242  (Addr {sym} base) => (MOVDaddr {sym} [0] base)
   243  (LocalAddr <t> {sym} base mem) && t.Elem().HasPointers() => (MOVDaddr {sym} (SPanchored base mem))
   244  (LocalAddr <t> {sym} base _)  && !t.Elem().HasPointers() => (MOVDaddr {sym} base)
   245  (OffPtr [off] ptr) => (ADD (MOVDconst <typ.Int64> [off]) ptr)
   246  (MOVDaddr {sym} [n] p:(ADD x y)) && sym == nil && n == 0 => p
   247  (MOVDaddr {sym} [n] ptr) && sym == nil && n == 0 && (ptr.Op == OpArgIntReg || ptr.Op == OpPhi) => ptr
   248  
   249  // TODO: optimize these cases?
   250  (Ctz32NonZero ...) => (Ctz32 ...)
   251  (Ctz64NonZero ...) => (Ctz64 ...)
   252  
   253  (Ctz64 x) && buildcfg.GOPPC64<=8 => (POPCNTD (ANDN <typ.Int64> (ADDconst <typ.Int64> [-1] x) x))
   254  (Ctz64 x) => (CNTTZD x)
   255  (Ctz32 x) && buildcfg.GOPPC64<=8 => (POPCNTW (MOVWZreg (ANDN <typ.Int> (ADDconst <typ.Int> [-1] x) x)))
   256  (Ctz32 x) => (CNTTZW (MOVWZreg x))
   257  (Ctz16 x) => (POPCNTW (MOVHZreg (ANDN <typ.Int16> (ADDconst <typ.Int16> [-1] x) x)))
   258  (Ctz8 x)  => (POPCNTB (MOVBZreg (ANDN <typ.UInt8> (ADDconst <typ.UInt8> [-1] x) x)))
   259  
   260  (BitLen64 x) => (SUBFCconst [64] (CNTLZD <typ.Int> x))
   261  (BitLen32 x) => (SUBFCconst [32] (CNTLZW <typ.Int> x))
   262  
   263  (PopCount64 ...) => (POPCNTD ...)
   264  (PopCount(32|16|8) x) => (POPCNT(W|W|B) (MOV(W|H|B)Zreg x))
   265  
   266  (And(64|32|16|8) ...) => (AND ...)
   267  (Or(64|32|16|8) ...) => (OR ...)
   268  (Xor(64|32|16|8) ...) => (XOR ...)
   269  
   270  (Neg(64|32|16|8) ...) => (NEG ...)
   271  (Neg(64|32)F ...) => (FNEG ...)
   272  
   273  (Com(64|32|16|8) x) => (NOR x x)
   274  
   275  // Lowering boolean ops
   276  (AndB ...) => (AND ...)
   277  (OrB ...) => (OR ...)
   278  (Not x) => (XORconst [1] x)
   279  
   280  // Merge logical operations
   281  (AND x (NOR y y)) => (ANDN x y)
   282  (OR x (NOR y y)) => (ORN x y)
   283  
   284  // Lowering comparisons
   285  (EqB x y)  => (ANDconst [1] (EQV x y))
   286  // Sign extension dependence on operand sign sets up for sign/zero-extension elision later
   287  (Eq(8|16) x y) && x.Type.IsSigned() && y.Type.IsSigned() => (Equal (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   288  (Eq(8|16) x y) => (Equal (CMPW (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   289  (Eq(32|64|Ptr) x y) => (Equal ((CMPW|CMP|CMP) x y))
   290  (Eq(32|64)F x y) => (Equal (FCMPU x y))
   291  
   292  (NeqB ...) => (XOR ...)
   293  // Like Eq8 and Eq16, prefer sign extension likely to enable later elision.
   294  (Neq(8|16) x y) && x.Type.IsSigned() && y.Type.IsSigned() => (NotEqual (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   295  (Neq(8|16) x y)  => (NotEqual (CMPW (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   296  (Neq(32|64|Ptr) x y) => (NotEqual ((CMPW|CMP|CMP) x y))
   297  (Neq(32|64)F x y) => (NotEqual (FCMPU x y))
   298  
   299  (Less(8|16) x y)  => (LessThan (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   300  (Less(32|64) x y) => (LessThan ((CMPW|CMP) x y))
   301  (Less(32|64)F x y) => (FLessThan (FCMPU x y))
   302  
   303  (Less(8|16)U x y)  => (LessThan (CMPWU (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   304  (Less(32|64)U x y) => (LessThan ((CMPWU|CMPU) x y))
   305  
   306  (Leq(8|16) x y)  => (LessEqual (CMPW (SignExt(8|16)to32 x) (SignExt(8|16)to32 y)))
   307  (Leq(32|64) x y) => (LessEqual ((CMPW|CMP) x y))
   308  (Leq(32|64)F x y) => (FLessEqual (FCMPU x y))
   309  
   310  (Leq(8|16)U x y)  => (LessEqual (CMPWU (ZeroExt(8|16)to32 x) (ZeroExt(8|16)to32 y)))
   311  (Leq(32|64)U x y) => (LessEqual (CMP(WU|U) x y))
   312  
   313  // Absorb pseudo-ops into blocks.
   314  (If (Equal cc) yes no) => (EQ cc yes no)
   315  (If (NotEqual cc) yes no) => (NE cc yes no)
   316  (If (LessThan cc) yes no) => (LT cc yes no)
   317  (If (LessEqual cc) yes no) => (LE cc yes no)
   318  (If (GreaterThan cc) yes no) => (GT cc yes no)
   319  (If (GreaterEqual cc) yes no) => (GE cc yes no)
   320  (If (FLessThan cc) yes no) => (FLT cc yes no)
   321  (If (FLessEqual cc) yes no) => (FLE cc yes no)
   322  (If (FGreaterThan cc) yes no) => (FGT cc yes no)
   323  (If (FGreaterEqual cc) yes no) => (FGE cc yes no)
   324  
   325  (If cond yes no) => (NE (CMPconst [0] (ANDconst [1] cond)) yes no)
   326  
   327  // Absorb boolean tests into block
   328  (NE (CMPconst [0] (ANDconst [1] ((Equal|NotEqual|LessThan|LessEqual|GreaterThan|GreaterEqual) cc))) yes no) => ((EQ|NE|LT|LE|GT|GE) cc yes no)
   329  (NE (CMPconst [0] (ANDconst [1] ((FLessThan|FLessEqual|FGreaterThan|FGreaterEqual) cc))) yes no) => ((FLT|FLE|FGT|FGE) cc yes no)
   330  
   331  // absorb flag constants into branches
   332  (EQ (FlagEQ) yes no) => (First yes no)
   333  (EQ (FlagLT) yes no) => (First no yes)
   334  (EQ (FlagGT) yes no) => (First no yes)
   335  
   336  (NE (FlagEQ) yes no) => (First no yes)
   337  (NE (FlagLT) yes no) => (First yes no)
   338  (NE (FlagGT) yes no) => (First yes no)
   339  
   340  (LT (FlagEQ) yes no) => (First no yes)
   341  (LT (FlagLT) yes no) => (First yes no)
   342  (LT (FlagGT) yes no) => (First no yes)
   343  
   344  (LE (FlagEQ) yes no) => (First yes no)
   345  (LE (FlagLT) yes no) => (First yes no)
   346  (LE (FlagGT) yes no) => (First no yes)
   347  
   348  (GT (FlagEQ) yes no) => (First no yes)
   349  (GT (FlagLT) yes no) => (First no yes)
   350  (GT (FlagGT) yes no) => (First yes no)
   351  
   352  (GE (FlagEQ) yes no) => (First yes no)
   353  (GE (FlagLT) yes no) => (First no yes)
   354  (GE (FlagGT) yes no) => (First yes no)
   355  
   356  // absorb InvertFlags into branches
   357  (LT (InvertFlags cmp) yes no) => (GT cmp yes no)
   358  (GT (InvertFlags cmp) yes no) => (LT cmp yes no)
   359  (LE (InvertFlags cmp) yes no) => (GE cmp yes no)
   360  (GE (InvertFlags cmp) yes no) => (LE cmp yes no)
   361  (EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
   362  (NE (InvertFlags cmp) yes no) => (NE cmp yes no)
   363  
   364  // constant comparisons
   365  (CMPWconst (MOVDconst [x]) [y]) && int32(x)==int32(y) => (FlagEQ)
   366  (CMPWconst (MOVDconst [x]) [y]) && int32(x)<int32(y)  => (FlagLT)
   367  (CMPWconst (MOVDconst [x]) [y]) && int32(x)>int32(y)  => (FlagGT)
   368  
   369  (CMPconst (MOVDconst [x]) [y]) && x==y => (FlagEQ)
   370  (CMPconst (MOVDconst [x]) [y]) && x<y  => (FlagLT)
   371  (CMPconst (MOVDconst [x]) [y]) && x>y  => (FlagGT)
   372  
   373  (CMPWUconst (MOVDconst [x]) [y]) && int32(x)==int32(y)  => (FlagEQ)
   374  (CMPWUconst (MOVDconst [x]) [y]) && uint32(x)<uint32(y) => (FlagLT)
   375  (CMPWUconst (MOVDconst [x]) [y]) && uint32(x)>uint32(y) => (FlagGT)
   376  
   377  (CMPUconst (MOVDconst [x]) [y]) && x==y  => (FlagEQ)
   378  (CMPUconst (MOVDconst [x]) [y]) && uint64(x)<uint64(y) => (FlagLT)
   379  (CMPUconst (MOVDconst [x]) [y]) && uint64(x)>uint64(y) => (FlagGT)
   380  
   381  // absorb flag constants into boolean values
   382  (Equal (FlagEQ)) => (MOVDconst [1])
   383  (Equal (FlagLT)) => (MOVDconst [0])
   384  (Equal (FlagGT)) => (MOVDconst [0])
   385  
   386  (NotEqual (FlagEQ)) => (MOVDconst [0])
   387  (NotEqual (FlagLT)) => (MOVDconst [1])
   388  (NotEqual (FlagGT)) => (MOVDconst [1])
   389  
   390  (LessThan (FlagEQ)) => (MOVDconst [0])
   391  (LessThan (FlagLT)) => (MOVDconst [1])
   392  (LessThan (FlagGT)) => (MOVDconst [0])
   393  
   394  (LessEqual (FlagEQ)) => (MOVDconst [1])
   395  (LessEqual (FlagLT)) => (MOVDconst [1])
   396  (LessEqual (FlagGT)) => (MOVDconst [0])
   397  
   398  (GreaterThan (FlagEQ)) => (MOVDconst [0])
   399  (GreaterThan (FlagLT)) => (MOVDconst [0])
   400  (GreaterThan (FlagGT)) => (MOVDconst [1])
   401  
   402  (GreaterEqual (FlagEQ)) => (MOVDconst [1])
   403  (GreaterEqual (FlagLT)) => (MOVDconst [0])
   404  (GreaterEqual (FlagGT)) => (MOVDconst [1])
   405  
   406  // absorb InvertFlags into boolean values
   407  ((Equal|NotEqual|LessThan|GreaterThan|LessEqual|GreaterEqual) (InvertFlags x)) => ((Equal|NotEqual|GreaterThan|LessThan|GreaterEqual|LessEqual) x)
   408  
   409  
   410  // Elide compares of bit tests
   411  ((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(AND x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (Select1 <types.TypeFlags> (ANDCC x y)) yes no)
   412  ((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(OR x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (Select1 <types.TypeFlags> (ORCC x y)) yes no)
   413  ((EQ|NE|LT|LE|GT|GE) (CMPconst [0] z:(XOR x y)) yes no) && z.Uses == 1 => ((EQ|NE|LT|LE|GT|GE) (Select1 <types.TypeFlags> (XORCC x y)) yes no)
   414  
   415  (CondSelect x y (SETBC [a] cmp))  => (ISEL [a] x y cmp)
   416  (CondSelect x y (SETBCR [a] cmp))  => (ISEL [a+4] x y cmp)
   417  // Only lower after bool is lowered. It should always lower. This helps ensure the folding below happens reliably.
   418  (CondSelect x y bool) && flagArg(bool) == nil => (ISEL [6] x y (CMPconst [0] (ANDconst [1] bool)))
   419  // Fold any CR -> GPR -> CR transfers when applying the above rule.
   420  (ISEL [6] x y (CMPconst [0] (ANDconst [1] (SETBC [c] cmp)))) => (ISEL [c] x y cmp)
   421  (ISEL [6] x y ((CMP|CMPW)const [0] (SETBC [c] cmp))) => (ISEL [c] x y cmp)
   422  (ISEL [6] x y ((CMP|CMPW)const [0] (SETBCR [c] cmp))) => (ISEL [c+4] x y cmp)
   423  
   424  // Lowering loads
   425  (Load <t> ptr mem) && (is64BitInt(t) || isPtr(t)) => (MOVDload ptr mem)
   426  (Load <t> ptr mem) && is32BitInt(t) &&  t.IsSigned() => (MOVWload ptr mem)
   427  (Load <t> ptr mem) && is32BitInt(t) && !t.IsSigned() => (MOVWZload ptr mem)
   428  (Load <t> ptr mem) && is16BitInt(t) &&  t.IsSigned() => (MOVHload ptr mem)
   429  (Load <t> ptr mem) && is16BitInt(t) && !t.IsSigned() => (MOVHZload ptr mem)
   430  (Load <t> ptr mem) && t.IsBoolean() => (MOVBZload ptr mem)
   431  (Load <t> ptr mem) && is8BitInt(t) &&  t.IsSigned() => (MOVBreg (MOVBZload ptr mem)) // PPC has no signed-byte load.
   432  (Load <t> ptr mem) && is8BitInt(t) && !t.IsSigned() => (MOVBZload ptr mem)
   433  
   434  (Load <t> ptr mem) && is32BitFloat(t) => (FMOVSload ptr mem)
   435  (Load <t> ptr mem) && is64BitFloat(t) => (FMOVDload ptr mem)
   436  
   437  (Store {t} ptr val mem) && t.Size() == 8 &&  t.IsFloat() => (FMOVDstore ptr val mem)
   438  (Store {t} ptr val mem) && t.Size() == 4 &&  t.IsFloat() => (FMOVSstore ptr val mem)
   439  (Store {t} ptr val mem) && t.Size() == 8 && !t.IsFloat() => (MOVDstore ptr val mem)
   440  (Store {t} ptr val mem) && t.Size() == 4 && !t.IsFloat() => (MOVWstore ptr val mem)
   441  (Store {t} ptr val mem) && t.Size() == 2 => (MOVHstore ptr val mem)
   442  (Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
   443  
   444  // Using Zero instead of LoweredZero allows the
   445  // target address to be folded where possible.
   446  (Zero [0] _ mem) => mem
   447  (Zero [1] destptr mem) => (MOVBstorezero destptr mem)
   448  (Zero [2] destptr mem) =>
   449  	(MOVHstorezero destptr mem)
   450  (Zero [3] destptr mem) =>
   451  	(MOVBstorezero [2] destptr
   452  		(MOVHstorezero destptr mem))
   453  (Zero [4] destptr mem) =>
   454  	(MOVWstorezero destptr mem)
   455  (Zero [5] destptr mem) =>
   456  	(MOVBstorezero [4] destptr
   457          	(MOVWstorezero destptr mem))
   458  (Zero [6] destptr mem) =>
   459  	(MOVHstorezero [4] destptr
   460  		(MOVWstorezero destptr mem))
   461  (Zero [7] destptr mem) =>
   462  	(MOVBstorezero [6] destptr
   463  		(MOVHstorezero [4] destptr
   464  			(MOVWstorezero destptr mem)))
   465  
   466  (Zero [8] {t} destptr mem) => (MOVDstorezero destptr mem)
   467  (Zero [12] {t} destptr mem) =>
   468          (MOVWstorezero [8] destptr
   469                  (MOVDstorezero [0] destptr mem))
   470  (Zero [16] {t} destptr mem) =>
   471         (MOVDstorezero [8] destptr
   472                  (MOVDstorezero [0] destptr mem))
   473  (Zero [24] {t} destptr mem) =>
   474         (MOVDstorezero [16] destptr
   475                 (MOVDstorezero [8] destptr
   476                         (MOVDstorezero [0] destptr mem)))
   477  (Zero [32] {t} destptr mem) =>
   478         (MOVDstorezero [24] destptr
   479                 (MOVDstorezero [16] destptr
   480                         (MOVDstorezero [8] destptr
   481                                 (MOVDstorezero [0] destptr mem))))
   482  
   483  // Handle cases not handled above
   484  // Lowered Short cases do not generate loops, and as a result don't clobber
   485  // the address registers or flags.
   486  (Zero [s] ptr mem) && buildcfg.GOPPC64 <= 8 && s < 64 => (LoweredZeroShort [s] ptr mem)
   487  (Zero [s] ptr mem) && buildcfg.GOPPC64 <= 8 => (LoweredZero [s] ptr mem)
   488  (Zero [s] ptr mem) && s < 128 && buildcfg.GOPPC64 >= 9 => (LoweredQuadZeroShort [s] ptr mem)
   489  (Zero [s] ptr mem) && buildcfg.GOPPC64 >= 9 => (LoweredQuadZero [s] ptr mem)
   490  
   491  // moves
   492  (Move [0] _ _ mem) => mem
   493  (Move [1] dst src mem) => (MOVBstore dst (MOVBZload src mem) mem)
   494  (Move [2] dst src mem) =>
   495          (MOVHstore dst (MOVHZload src mem) mem)
   496  (Move [4] dst src mem) =>
   497  	(MOVWstore dst (MOVWZload src mem) mem)
   498  // MOVD for load and store must have offsets that are multiple of 4
   499  (Move [8] {t} dst src mem) =>
   500  	(MOVDstore dst (MOVDload src mem) mem)
   501  (Move [3] dst src mem) =>
   502          (MOVBstore [2] dst (MOVBZload [2] src mem)
   503                  (MOVHstore dst (MOVHload src mem) mem))
   504  (Move [5] dst src mem) =>
   505          (MOVBstore [4] dst (MOVBZload [4] src mem)
   506                  (MOVWstore dst (MOVWZload src mem) mem))
   507  (Move [6] dst src mem) =>
   508          (MOVHstore [4] dst (MOVHZload [4] src mem)
   509                  (MOVWstore dst (MOVWZload src mem) mem))
   510  (Move [7] dst src mem) =>
   511          (MOVBstore [6] dst (MOVBZload [6] src mem)
   512                  (MOVHstore [4] dst (MOVHZload [4] src mem)
   513                          (MOVWstore dst (MOVWZload src mem) mem)))
   514  
   515  // Large move uses a loop. Since the address is computed and the
   516  // offset is zero, any alignment can be used.
   517  (Move [s] dst src mem) && s > 8 && buildcfg.GOPPC64 <= 8 && logLargeCopy(v, s) =>
   518          (LoweredMove [s] dst src mem)
   519  (Move [s] dst src mem) && s > 8 && s <= 64 && buildcfg.GOPPC64 >= 9 =>
   520          (LoweredQuadMoveShort [s] dst src mem)
   521  (Move [s] dst src mem) && s > 8 && buildcfg.GOPPC64 >= 9 && logLargeCopy(v, s) =>
   522          (LoweredQuadMove [s] dst src mem)
   523  
   524  // Calls
   525  // Lowering calls
   526  (StaticCall ...) => (CALLstatic ...)
   527  (ClosureCall ...) => (CALLclosure ...)
   528  (InterCall ...) => (CALLinter ...)
   529  (TailCall ...) => (CALLtail ...)
   530  
   531  // Miscellaneous
   532  (GetClosurePtr ...) => (LoweredGetClosurePtr ...)
   533  (GetCallerSP ...) => (LoweredGetCallerSP ...)
   534  (GetCallerPC ...) => (LoweredGetCallerPC ...)
   535  (IsNonNil ptr) => (NotEqual (CMPconst [0] ptr))
   536  (IsInBounds idx len) => (LessThan (CMPU idx len))
   537  (IsSliceInBounds idx len) => (LessEqual (CMPU idx len))
   538  (NilCheck ...) => (LoweredNilCheck ...)
   539  
   540  // Write barrier.
   541  (WB ...) => (LoweredWB ...)
   542  
   543  // Publication barrier as intrinsic
   544  (PubBarrier ...) => (LoweredPubBarrier ...)
   545  
   546  (PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
   547  (PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
   548  (PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
   549  
   550  // Optimizations
   551  // Note that PPC "logical" immediates come in 0:15 and 16:31 unsigned immediate forms,
   552  // so ORconst, XORconst easily expand into a pair.
   553  
   554  // Include very-large constants in the const-const case.
   555  (AND (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c&d])
   556  (OR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c|d])
   557  (XOR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c^d])
   558  (ORN (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c|^d])
   559  (ANDN (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c&^d])
   560  (NOR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [^(c|d)])
   561  
   562  // Discover consts
   563  (AND x (MOVDconst [-1])) => x
   564  (AND x (MOVDconst [c])) && isU16Bit(c) => (ANDconst [c] x)
   565  (XOR x (MOVDconst [c])) && isU32Bit(c) => (XORconst [c] x)
   566  (OR x (MOVDconst [c])) && isU32Bit(c) => (ORconst [c] x)
   567  
   568  // Simplify consts
   569  (ANDconst [c] (ANDconst [d] x)) => (ANDconst [c&d] x)
   570  (ORconst [c] (ORconst [d] x)) => (ORconst [c|d] x)
   571  (XORconst [c] (XORconst [d] x)) => (XORconst [c^d] x)
   572  (ANDconst [-1] x) => x
   573  (ANDconst [0] _) => (MOVDconst [0])
   574  (XORconst [0] x) => x
   575  (ORconst [-1] _) => (MOVDconst [-1])
   576  (ORconst [0] x) => x
   577  
   578  // zero-extend of small and => small and
   579  (MOVBZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFF => y
   580  (MOVHZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFF => y
   581  (MOVWZreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFFFFFF => y
   582  (MOVWZreg y:(AND (MOVDconst [c]) _)) && uint64(c) <= 0xFFFFFFFF => y
   583  
   584  // sign extend of small-positive and => small-positive-and
   585  (MOVBreg y:(ANDconst [c] _)) && uint64(c) <= 0x7F => y
   586  (MOVHreg y:(ANDconst [c] _)) && uint64(c) <= 0x7FFF => y
   587  (MOVWreg y:(ANDconst [c] _)) && uint64(c) <= 0xFFFF => y // 0xFFFF is largest immediate constant, when regarded as 32-bit is > 0
   588  (MOVWreg y:(AND (MOVDconst [c]) _)) && uint64(c) <= 0x7FFFFFFF => y
   589  
   590  // small and of zero-extend => either zero-extend or small and
   591  (ANDconst [c] y:(MOVBZreg _)) && c&0xFF == 0xFF => y
   592  (ANDconst [0xFF] (MOVBreg x)) => (MOVBZreg x)
   593  (ANDconst [c] y:(MOVHZreg _))  && c&0xFFFF == 0xFFFF => y
   594  (ANDconst [0xFFFF] (MOVHreg x)) => (MOVHZreg x)
   595  
   596  (AND (MOVDconst [c]) y:(MOVWZreg _))  && c&0xFFFFFFFF == 0xFFFFFFFF => y
   597  (AND (MOVDconst [0xFFFFFFFF]) y:(MOVWreg x)) => (MOVWZreg x)
   598  // normal case
   599  (ANDconst [c] (MOVBZreg x)) => (ANDconst [c&0xFF] x)
   600  (ANDconst [c] (MOVHZreg x)) => (ANDconst [c&0xFFFF] x)
   601  (ANDconst [c] (MOVWZreg x)) => (ANDconst [c&0xFFFFFFFF] x)
   602  
   603  // Eliminate unnecessary sign/zero extend following right shift
   604  (MOV(B|H|W)Zreg (SRWconst [c] (MOVBZreg x))) => (SRWconst [c] (MOVBZreg x))
   605  (MOV(H|W)Zreg (SRWconst [c] (MOVHZreg x))) => (SRWconst [c] (MOVHZreg x))
   606  (MOVWZreg (SRWconst [c] (MOVWZreg x))) => (SRWconst [c] (MOVWZreg x))
   607  (MOV(B|H|W)reg (SRAWconst [c] (MOVBreg x))) => (SRAWconst [c] (MOVBreg x))
   608  (MOV(H|W)reg (SRAWconst [c] (MOVHreg x))) => (SRAWconst [c] (MOVHreg x))
   609  (MOVWreg (SRAWconst [c] (MOVWreg x))) => (SRAWconst [c] (MOVWreg x))
   610  
   611  (MOV(WZ|W)reg (S(R|RA)Wconst [c] x)) && sizeof(x.Type) <= 32 => (S(R|RA)Wconst [c] x)
   612  (MOV(HZ|H)reg (S(R|RA)Wconst [c] x)) && sizeof(x.Type) <= 16 => (S(R|RA)Wconst [c] x)
   613  (MOV(BZ|B)reg (S(R|RA)Wconst [c] x)) && sizeof(x.Type) == 8 => (S(R|RA)Wconst [c] x)
   614  
   615  // initial right shift will handle sign/zero extend
   616  (MOVBZreg (SRDconst [c] x)) && c>=56 => (SRDconst [c] x)
   617  (MOVBreg (SRDconst [c] x)) && c>56 => (SRDconst [c] x)
   618  (MOVBreg (SRDconst [c] x)) && c==56 => (SRADconst [c] x)
   619  (MOVBreg (SRADconst [c] x)) && c>=56 => (SRADconst [c] x)
   620  (MOVBZreg (SRWconst [c] x)) && c>=24 => (SRWconst [c] x)
   621  (MOVBreg (SRWconst [c] x)) && c>24 => (SRWconst [c] x)
   622  (MOVBreg (SRWconst [c] x)) && c==24 => (SRAWconst [c] x)
   623  (MOVBreg (SRAWconst [c] x)) && c>=24 => (SRAWconst [c] x)
   624  
   625  (MOVHZreg (SRDconst [c] x)) && c>=48 => (SRDconst [c] x)
   626  (MOVHreg (SRDconst [c] x)) && c>48 => (SRDconst [c] x)
   627  (MOVHreg (SRDconst [c] x)) && c==48 => (SRADconst [c] x)
   628  (MOVHreg (SRADconst [c] x)) && c>=48 => (SRADconst [c] x)
   629  (MOVHZreg (SRWconst [c] x)) && c>=16 => (SRWconst [c] x)
   630  (MOVHreg (SRWconst [c] x)) && c>16 => (SRWconst [c] x)
   631  (MOVHreg (SRAWconst [c] x)) && c>=16 => (SRAWconst [c] x)
   632  (MOVHreg (SRWconst [c] x)) && c==16 => (SRAWconst [c] x)
   633  
   634  (MOVWZreg (SRDconst [c] x)) && c>=32 => (SRDconst [c] x)
   635  (MOVWreg (SRDconst [c] x)) && c>32 => (SRDconst [c] x)
   636  (MOVWreg (SRADconst [c] x)) && c>=32 => (SRADconst [c] x)
   637  (MOVWreg (SRDconst [c] x)) && c==32 => (SRADconst [c] x)
   638  
   639  // Various redundant zero/sign extension combinations.
   640  (MOVBZreg y:(MOVBZreg _)) => y  // repeat
   641  (MOVBreg y:(MOVBreg _)) => y // repeat
   642  (MOVBreg (MOVBZreg x)) => (MOVBreg x)
   643  (MOVBZreg (MOVBreg x)) => (MOVBZreg x)
   644  
   645  // Catch any remaining rotate+shift cases
   646  (MOVBZreg (SRWconst x [s])) && mergePPC64AndSrwi(0xFF,s) != 0 => (RLWINM [mergePPC64AndSrwi(0xFF,s)] x)
   647  (MOVBZreg (RLWINM [r] y)) && mergePPC64AndRlwinm(0xFF,r) != 0 => (RLWINM [mergePPC64AndRlwinm(0xFF,r)] y)
   648  (MOVHZreg (RLWINM [r] y)) && mergePPC64AndRlwinm(0xFFFF,r) != 0 => (RLWINM [mergePPC64AndRlwinm(0xFFFF,r)] y)
   649  (MOVWZreg (RLWINM [r] y)) && mergePPC64MovwzregRlwinm(r) != 0 => (RLWINM [mergePPC64MovwzregRlwinm(r)] y)
   650  (ANDconst [m] (RLWINM [r] y)) && mergePPC64AndRlwinm(uint32(m),r) != 0 => (RLWINM [mergePPC64AndRlwinm(uint32(m),r)] y)
   651  (SLDconst [s] (RLWINM [r] y)) && mergePPC64SldiRlwinm(s,r) != 0 => (RLWINM [mergePPC64SldiRlwinm(s,r)] y)
   652  (RLWINM [r] (MOVHZreg u)) && mergePPC64RlwinmAnd(r,0xFFFF) != 0 => (RLWINM [mergePPC64RlwinmAnd(r,0xFFFF)] u)
   653  (RLWINM [r] (ANDconst [a] u)) && mergePPC64RlwinmAnd(r,uint32(a)) != 0 => (RLWINM [mergePPC64RlwinmAnd(r,uint32(a))] u)
   654  // SLWconst is a special case of RLWNM which always zero-extends the result.
   655  (SLWconst [s] (MOVWZreg w)) => (SLWconst [s] w)
   656  (MOVWZreg w:(SLWconst u)) => w
   657  
   658  // H - there are more combinations than these
   659  
   660  (MOVHZreg y:(MOV(H|B)Zreg _)) => y // repeat
   661  (MOVHZreg y:(MOVHBRload _ _)) => y
   662  
   663  (MOVHreg y:(MOV(H|B)reg _)) => y // repeat
   664  
   665  (MOV(H|HZ)reg y:(MOV(HZ|H)reg x)) => (MOV(H|HZ)reg x)
   666  
   667  // W - there are more combinations than these
   668  
   669  (MOV(WZ|WZ|WZ|W|W|W)reg y:(MOV(WZ|HZ|BZ|W|H|B)reg _)) => y // repeat
   670  (MOVWZreg y:(MOV(H|W)BRload _ _)) => y
   671  
   672  (MOV(W|WZ)reg y:(MOV(WZ|W)reg x)) => (MOV(W|WZ)reg x)
   673  
   674  // Truncate then logical then truncate: omit first, lesser or equal truncate
   675  (MOVWZreg ((OR|XOR|AND) <t> x (MOVWZreg y))) => (MOVWZreg ((OR|XOR|AND) <t> x y))
   676  (MOVHZreg ((OR|XOR|AND) <t> x (MOVWZreg y))) => (MOVHZreg ((OR|XOR|AND) <t> x y))
   677  (MOVHZreg ((OR|XOR|AND) <t> x (MOVHZreg y))) => (MOVHZreg ((OR|XOR|AND) <t> x y))
   678  (MOVBZreg ((OR|XOR|AND) <t> x (MOVWZreg y))) => (MOVBZreg ((OR|XOR|AND) <t> x y))
   679  (MOVBZreg ((OR|XOR|AND) <t> x (MOVHZreg y))) => (MOVBZreg ((OR|XOR|AND) <t> x y))
   680  (MOVBZreg ((OR|XOR|AND) <t> x (MOVBZreg y))) => (MOVBZreg ((OR|XOR|AND) <t> x y))
   681  
   682  (MOV(B|H|W)Zreg z:(ANDconst [c] (MOVBZload ptr x))) => z
   683  (MOV(B|H|W)Zreg z:(AND y (MOV(B|H|W)Zload ptr x))) => z
   684  (MOV(H|W)Zreg z:(ANDconst [c] (MOVHZload ptr x))) => z
   685  (MOVWZreg z:(ANDconst [c] (MOVWZload ptr x))) => z
   686  
   687  // Arithmetic constant ops
   688  
   689  (ADD x (MOVDconst <t> [c])) && is32Bit(c) && !t.IsPtr() => (ADDconst [c] x)
   690  (ADDconst [c] (ADDconst [d] x)) && is32Bit(c+d) => (ADDconst [c+d] x)
   691  (ADDconst [0] x) => x
   692  (SUB x (MOVDconst [c])) && is32Bit(-c) => (ADDconst [-c] x)
   693  
   694  (ADDconst [c] (MOVDaddr [d] {sym} x)) && is32Bit(c+int64(d)) => (MOVDaddr [int32(c+int64(d))] {sym} x)
   695  (ADDconst [c] x:(SP)) && is32Bit(c) => (MOVDaddr [int32(c)] x) // so it is rematerializeable
   696  
   697  (MULL(W|D) x (MOVDconst [c])) && is16Bit(c) => (MULL(W|D)const [int32(c)] x)
   698  
   699  // Subtract from (with carry, but ignored) constant.
   700  // Note, these clobber the carry bit.
   701  (SUB (MOVDconst [c]) x) && is32Bit(c) => (SUBFCconst [c] x)
   702  (SUBFCconst [c] (NEG x)) => (ADDconst [c] x)
   703  (SUBFCconst [c] (SUBFCconst [d] x)) && is32Bit(c-d) => (ADDconst [c-d] x)
   704  (SUBFCconst [0] x) => (NEG x)
   705  (ADDconst [c] (SUBFCconst [d] x)) && is32Bit(c+d) => (SUBFCconst [c+d] x)
   706  (NEG (ADDconst [c] x)) && is32Bit(-c) => (SUBFCconst [-c] x)
   707  (NEG (SUBFCconst [c] x)) && is32Bit(-c) => (ADDconst [-c] x)
   708  (NEG (SUB x y)) => (SUB y x)
   709  (NEG (NEG x)) => x
   710  
   711  // Use register moves instead of stores and loads to move int<=>float values
   712  // Common with math Float64bits, Float64frombits
   713  (MOVDload [off] {sym} ptr (FMOVDstore [off] {sym} ptr x _)) => (MFVSRD x)
   714  (FMOVDload [off] {sym} ptr (MOVDstore [off] {sym} ptr x _)) => (MTVSRD x)
   715  
   716  (FMOVDstore [off] {sym} ptr (MTVSRD x) mem) => (MOVDstore [off] {sym} ptr x mem)
   717  (MOVDstore [off] {sym} ptr (MFVSRD x) mem) => (FMOVDstore [off] {sym} ptr x mem)
   718  
   719  (MTVSRD (MOVDconst [c])) && !math.IsNaN(math.Float64frombits(uint64(c))) => (FMOVDconst [math.Float64frombits(uint64(c))])
   720  (MFVSRD (FMOVDconst [c])) => (MOVDconst [int64(math.Float64bits(c))])
   721  
   722  (MTVSRD x:(MOVDload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (FMOVDload [off] {sym} ptr mem)
   723  (MFVSRD x:(FMOVDload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVDload [off] {sym} ptr mem)
   724  
   725  // Rules for MOV* or FMOV* ops determine when indexed (MOV*loadidx or MOV*storeidx)
   726  // or non-indexed (MOV*load or MOV*store) should be used. Indexed instructions
   727  // require an extra instruction and register to load the index so non-indexed is preferred.
   728  // Indexed ops generate indexed load or store instructions for all GOPPC64 values.
   729  // Non-indexed ops generate DS-form loads and stores when the offset fits in 16 bits,
   730  // and on power8 and power9, a multiple of 4 is required for MOVW and MOVD ops.
   731  // On power10, prefixed loads and stores can be used for offsets > 16 bits and <= 32 bits.
   732  // and support for PC relative addressing must be available if relocation is needed.
   733  // On power10, the assembler will determine when to use DS-form or prefixed
   734  // instructions for non-indexed ops depending on the value of the offset.
   735  //
   736  // Fold offsets for stores.
   737  (MOV(D|W|H|B)store [off1] {sym} (ADDconst [off2] x) val mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (MOV(D|W|H|B)store [off1+int32(off2)] {sym} x val mem)
   738  
   739  (FMOV(S|D)store [off1] {sym} (ADDconst [off2] ptr) val mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (FMOV(S|D)store [off1+int32(off2)] {sym} ptr val mem)
   740  
   741  // Fold address into load/store.
   742  // If power10 with PCRel is not available, then
   743  // the assembler needs to generate several instructions and use
   744  // temp register for accessing global, and each time it will reload
   745  // the temp register. So don't fold address of global in that case if there is more than
   746  // one use.
   747  (MOV(B|H|W|D)store [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
   748  	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   749          (MOV(B|H|W|D)store [off1+off2] {mergeSym(sym1,sym2)} ptr val mem)
   750  
   751  (FMOV(S|D)store [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) val mem) && canMergeSym(sym1,sym2)
   752  	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   753          (FMOV(S|D)store [off1+off2] {mergeSym(sym1,sym2)} ptr val mem)
   754  
   755  (MOV(B|H|W)Zload [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
   756  	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   757          (MOV(B|H|W)Zload [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
   758  (MOV(H|W|D)load [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
   759  	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   760          (MOV(H|W|D)load [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
   761  (FMOV(S|D)load [off1] {sym1} p:(MOVDaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2)
   762  	&& ((is16Bit(int64(off1+off2)) && (ptr.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   763          (FMOV(S|D)load [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
   764  
   765  // Fold offsets for loads.
   766  (FMOV(S|D)load [off1] {sym} (ADDconst [off2] ptr) mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (FMOV(S|D)load [off1+int32(off2)] {sym} ptr mem)
   767  
   768  (MOV(D|W|WZ|H|HZ|BZ)load [off1] {sym} (ADDconst [off2] x) mem) && (is16Bit(int64(off1)+off2) || (supportsPPC64PCRel() && is32Bit(int64(off1)+off2))) => (MOV(D|W|WZ|H|HZ|BZ)load [off1+int32(off2)] {sym} x mem)
   769  
   770  // Determine load + addressing that can be done as a register indexed load
   771  (MOV(D|W|WZ|H|HZ|BZ)load [0] {sym} p:(ADD ptr idx) mem) && sym == nil && p.Uses == 1 => (MOV(D|W|WZ|H|HZ|BZ)loadidx ptr idx mem)
   772  
   773  // See comments above concerning selection of indexed vs. non-indexed ops.
   774  // These cases don't have relocation.
   775  (MOV(D|W)loadidx ptr (MOVDconst [c]) mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(D|W)load [int32(c)] ptr mem)
   776  (MOV(WZ|H|HZ|BZ)loadidx ptr (MOVDconst [c]) mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(WZ|H|HZ|BZ)load [int32(c)] ptr mem)
   777  (MOV(D|W)loadidx (MOVDconst [c]) ptr mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(D|W)load [int32(c)] ptr mem)
   778  (MOV(WZ|H|HZ|BZ)loadidx (MOVDconst [c]) ptr mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(WZ|H|HZ|BZ)load [int32(c)] ptr mem)
   779  
   780  // Store of zero => storezero
   781  (MOV(D|W|H|B)store [off] {sym} ptr (MOVDconst [0]) mem) => (MOV(D|W|H|B)storezero [off] {sym} ptr mem)
   782  
   783  // Fold offsets for storezero
   784  (MOV(D|W|H|B)storezero [off1] {sym} (ADDconst [off2] x) mem) && ((supportsPPC64PCRel() && is32Bit(int64(off1)+off2)) || (is16Bit(int64(off1)+off2))) =>
   785      (MOV(D|W|H|B)storezero [off1+int32(off2)] {sym} x mem)
   786  
   787  // Stores with addressing that can be done as indexed stores
   788  (MOV(D|W|H|B)store [0] {sym} p:(ADD ptr idx) val mem) && sym == nil && p.Uses == 1 => (MOV(D|W|H|B)storeidx ptr idx val mem)
   789  
   790  (MOVDstoreidx ptr (MOVDconst [c]) val mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOVDstore [int32(c)] ptr val mem)
   791  (MOV(W|H|B)storeidx ptr (MOVDconst [c]) val mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(W|H|B)store [int32(c)] ptr val mem)
   792  (MOVDstoreidx (MOVDconst [c]) ptr val mem) && ((is16Bit(c) && c%4 == 0) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOVDstore [int32(c)] ptr val mem)
   793  (MOV(W|H|B)storeidx (MOVDconst [c]) ptr val mem) && (is16Bit(c) || (buildcfg.GOPPC64 >= 10 && is32Bit(c))) => (MOV(W|H|B)store [int32(c)] ptr val mem)
   794  
   795  // Fold symbols into storezero
   796  (MOV(D|W|H|B)storezero [off1] {sym1} p:(MOVDaddr [off2] {sym2} x) mem) && canMergeSym(sym1,sym2)
   797  	&& ((is16Bit(int64(off1+off2)) && (x.Op != OpSB || p.Uses == 1)) || (supportsPPC64PCRel() && is32Bit(int64(off1+off2)))) =>
   798      (MOV(D|W|H|B)storezero [off1+off2] {mergeSym(sym1,sym2)} x mem)
   799  
   800  // atomic intrinsics
   801  (AtomicLoad(8|32|64|Ptr)  ptr mem) => (LoweredAtomicLoad(8|32|64|Ptr) [1] ptr mem)
   802  (AtomicLoadAcq(32|64)     ptr mem) => (LoweredAtomicLoad(32|64) [0] ptr mem)
   803  
   804  (AtomicStore(8|32|64)    ptr val mem) => (LoweredAtomicStore(8|32|64) [1] ptr val mem)
   805  (AtomicStoreRel(32|64)   ptr val mem) => (LoweredAtomicStore(32|64) [0] ptr val mem)
   806  
   807  (AtomicExchange(32|64) ...) => (LoweredAtomicExchange(32|64) ...)
   808  
   809  (AtomicAdd(32|64) ...) => (LoweredAtomicAdd(32|64) ...)
   810  
   811  (AtomicCompareAndSwap(32|64) ptr old new_ mem) => (LoweredAtomicCas(32|64) [1] ptr old new_ mem)
   812  (AtomicCompareAndSwapRel32   ptr old new_ mem) => (LoweredAtomicCas32 [0] ptr old new_ mem)
   813  
   814  (AtomicAnd(8|32)  ...) => (LoweredAtomicAnd(8|32)  ...)
   815  (AtomicOr(8|32)   ...) => (LoweredAtomicOr(8|32)   ...)
   816  
   817  (Slicemask <t> x) => (SRADconst (NEG <t> x) [63])
   818  (ANDconst [1] z:(SRADconst [63] x)) && z.Uses == 1  => (SRDconst [63] x)
   819  
   820  // Note that MOV??reg returns a 64-bit int, x is not necessarily that wide
   821  // This may interact with other patterns in the future. (Compare with arm64)
   822  (MOV(B|H|W)Zreg x:(MOVBZload _ _)) => x
   823  (MOV(B|H|W)Zreg x:(MOVBZloadidx _ _ _)) => x
   824  (MOV(H|W)Zreg x:(MOVHZload _ _)) => x
   825  (MOV(H|W)Zreg x:(MOVHZloadidx _ _ _)) => x
   826  (MOV(H|W)reg x:(MOVHload _ _)) => x
   827  (MOV(H|W)reg x:(MOVHloadidx _ _ _)) => x
   828  (MOV(WZ|W)reg x:(MOV(WZ|W)load _ _)) => x
   829  (MOV(WZ|W)reg x:(MOV(WZ|W)loadidx _ _ _)) => x
   830  (MOV(B|W)Zreg x:(Select0 (LoweredAtomicLoad(8|32) _ _))) => x
   831  
   832  // don't extend if argument is already extended
   833  (MOVBreg x:(Arg <t>)) && is8BitInt(t) && t.IsSigned() => x
   834  (MOVBZreg x:(Arg <t>)) && is8BitInt(t) && !t.IsSigned() => x
   835  (MOVHreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t)) && t.IsSigned() => x
   836  (MOVHZreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t)) && !t.IsSigned() => x
   837  (MOVWreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t) || is32BitInt(t)) && t.IsSigned() => x
   838  (MOVWZreg x:(Arg <t>)) && (is8BitInt(t) || is16BitInt(t) || is32BitInt(t)) && !t.IsSigned() => x
   839  
   840  (MOVBZreg (MOVDconst [c]))  => (MOVDconst [int64(uint8(c))])
   841  (MOVBreg (MOVDconst [c]))  => (MOVDconst [int64(int8(c))])
   842  (MOVHZreg (MOVDconst [c]))  => (MOVDconst [int64(uint16(c))])
   843  (MOVHreg (MOVDconst [c]))  => (MOVDconst [int64(int16(c))])
   844  (MOVWreg (MOVDconst [c])) => (MOVDconst [int64(int32(c))])
   845  (MOVWZreg (MOVDconst [c])) => (MOVDconst [int64(uint32(c))])
   846  
   847  // Implement clrsldi and clrslwi extended mnemonics as described in
   848  // ISA 3.0 section C.8. AuxInt field contains values needed for
   849  // the instructions, packed together since there is only one available.
   850  (SLDconst [c] z:(MOVBZreg x)) && c < 8 && z.Uses == 1 => (CLRLSLDI [newPPC64ShiftAuxInt(c,56,63,64)] x)
   851  (SLDconst [c] z:(MOVHZreg x)) && c < 16 && z.Uses == 1 => (CLRLSLDI [newPPC64ShiftAuxInt(c,48,63,64)] x)
   852  (SLDconst [c] z:(MOVWZreg x)) && c < 32 && z.Uses == 1 => (CLRLSLDI [newPPC64ShiftAuxInt(c,32,63,64)] x)
   853  
   854  (SLDconst [c] z:(ANDconst [d] x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c <= (64-getPPC64ShiftMaskLength(d)) => (CLRLSLDI [newPPC64ShiftAuxInt(c,64-getPPC64ShiftMaskLength(d),63,64)] x)
   855  (SLDconst [c] z:(AND (MOVDconst [d]) x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c<=(64-getPPC64ShiftMaskLength(d)) => (CLRLSLDI [newPPC64ShiftAuxInt(c,64-getPPC64ShiftMaskLength(d),63,64)] x)
   856  (SLWconst [c] z:(MOVBZreg x)) && z.Uses == 1 && c < 8 => (CLRLSLWI [newPPC64ShiftAuxInt(c,24,31,32)] x)
   857  (SLWconst [c] z:(MOVHZreg x)) && z.Uses == 1 && c < 16 => (CLRLSLWI [newPPC64ShiftAuxInt(c,16,31,32)] x)
   858  (SLWconst [c] z:(ANDconst [d] x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c<=(32-getPPC64ShiftMaskLength(d)) => (CLRLSLWI [newPPC64ShiftAuxInt(c,32-getPPC64ShiftMaskLength(d),31,32)] x)
   859  (SLWconst [c] z:(AND (MOVDconst [d]) x)) && z.Uses == 1 && isPPC64ValidShiftMask(d) && c<=(32-getPPC64ShiftMaskLength(d)) => (CLRLSLWI [newPPC64ShiftAuxInt(c,32-getPPC64ShiftMaskLength(d),31,32)] x)
   860  // special case for power9
   861  (SL(W|D)const [c] z:(MOVWreg x)) && c < 32 && buildcfg.GOPPC64 >= 9 => (EXTSWSLconst [c] x)
   862  
   863  // Lose widening ops fed to stores
   864  (MOVBstore [off] {sym} ptr (MOV(B|BZ|H|HZ|W|WZ)reg x) mem) => (MOVBstore [off] {sym} ptr x mem)
   865  (MOVHstore [off] {sym} ptr (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHstore [off] {sym} ptr x mem)
   866  (MOVWstore [off] {sym} ptr (MOV(W|WZ)reg x) mem) => (MOVWstore [off] {sym} ptr x mem)
   867  (MOVBstore [off] {sym} ptr (SRWconst (MOV(H|HZ)reg x) [c]) mem) && c <= 8 => (MOVBstore [off] {sym} ptr (SRWconst <typ.UInt32> x [c]) mem)
   868  (MOVBstore [off] {sym} ptr (SRWconst (MOV(W|WZ)reg x) [c]) mem) && c <= 24 => (MOVBstore [off] {sym} ptr (SRWconst <typ.UInt32> x [c]) mem)
   869  (MOVBstoreidx ptr idx (MOV(B|BZ|H|HZ|W|WZ)reg x) mem) => (MOVBstoreidx ptr idx x mem)
   870  (MOVHstoreidx ptr idx (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHstoreidx ptr idx x mem)
   871  (MOVWstoreidx ptr idx (MOV(W|WZ)reg x) mem) => (MOVWstoreidx ptr idx x mem)
   872  (MOVBstoreidx ptr idx (SRWconst (MOV(H|HZ)reg x) [c]) mem) && c <= 8 => (MOVBstoreidx ptr idx (SRWconst <typ.UInt32> x [c]) mem)
   873  (MOVBstoreidx ptr idx (SRWconst (MOV(W|WZ)reg x) [c]) mem) && c <= 24 => (MOVBstoreidx ptr idx (SRWconst <typ.UInt32> x [c]) mem)
   874  (MOVHBRstore ptr (MOV(H|HZ|W|WZ)reg x) mem) => (MOVHBRstore ptr x mem)
   875  (MOVWBRstore ptr (MOV(W|WZ)reg x) mem) => (MOVWBRstore ptr x mem)
   876  
   877  // Lose W-widening ops fed to compare-W
   878  (CMP(W|WU) x (MOV(W|WZ)reg y)) => (CMP(W|WU) x y)
   879  (CMP(W|WU) (MOV(W|WZ)reg x) y) => (CMP(W|WU) x y)
   880  
   881  (CMP x (MOVDconst [c])) && is16Bit(c) => (CMPconst x [c])
   882  (CMP (MOVDconst [c]) y) && is16Bit(c) => (InvertFlags (CMPconst y [c]))
   883  (CMPW x (MOVDconst [c])) && is16Bit(c) => (CMPWconst x [int32(c)])
   884  (CMPW (MOVDconst [c]) y) && is16Bit(c) => (InvertFlags (CMPWconst y [int32(c)]))
   885  
   886  (CMPU x (MOVDconst [c])) && isU16Bit(c) => (CMPUconst x [c])
   887  (CMPU (MOVDconst [c]) y) && isU16Bit(c) => (InvertFlags (CMPUconst y [c]))
   888  (CMPWU x (MOVDconst [c])) && isU16Bit(c) => (CMPWUconst x [int32(c)])
   889  (CMPWU (MOVDconst [c]) y) && isU16Bit(c) => (InvertFlags (CMPWUconst y [int32(c)]))
   890  
   891  // Canonicalize the order of arguments to comparisons - helps with CSE.
   892  ((CMP|CMPW|CMPU|CMPWU) x y) && canonLessThan(x,y) => (InvertFlags ((CMP|CMPW|CMPU|CMPWU) y x))
   893  
   894  // n is always a zero-extended uint16 value, so n & z is always a non-negative 32 or 64 bit value.
   895  // Rewrite to a cmp int64(0) to lower into ANDCCconst in the latelower pass.
   896  (CMP(W|U|WU)const [0] a:(ANDconst [n] z)) => (CMPconst [0] a)
   897  
   898  // SETBC auxInt values 0=LT 1=GT 2=EQ   Crbit==1 ? 1 : 0
   899  // SETBCR auxInt values 0=LT 1=GT 2=EQ   Crbit==1 ? 0 : 1
   900  (Equal cmp) => (SETBC [2] cmp)
   901  (NotEqual cmp) => (SETBCR [2] cmp)
   902  (LessThan cmp) => (SETBC [0] cmp)
   903  (FLessThan cmp) => (SETBC [0] cmp)
   904  (FLessEqual cmp) => (OR (SETBC [2] cmp) (SETBC [0] cmp))
   905  (GreaterEqual cmp) => (SETBCR [0] cmp)
   906  (GreaterThan cmp)  => (SETBC [1] cmp)
   907  (FGreaterEqual cmp) => (OR (SETBC [2] cmp) (SETBC [1] cmp))
   908  (FGreaterThan cmp)  => (SETBC [1] cmp)
   909  (LessEqual cmp) => (SETBCR [1] cmp)
   910  
   911  (SETBC [0] (FlagLT)) => (MOVDconst [1])
   912  (SETBC [0] (Flag(GT|EQ))) => (MOVDconst [0])
   913  (SETBC [1] (FlagGT)) => (MOVDconst [1])
   914  (SETBC [1] (Flag(LT|EQ))) => (MOVDconst [0])
   915  (SETBC [2] (FlagEQ)) => (MOVDconst [1])
   916  (SETBC [2] (Flag(LT|GT))) => (MOVDconst [0])
   917  
   918  (SETBCR [0] (FlagLT)) => (MOVDconst [0])
   919  (SETBCR [0] (Flag(GT|EQ))) => (MOVDconst [1])
   920  (SETBCR [1] (FlagGT)) => (MOVDconst [0])
   921  (SETBCR [1] (Flag(LT|EQ))) => (MOVDconst [1])
   922  (SETBCR [2] (FlagEQ)) => (MOVDconst [0])
   923  (SETBCR [2] (Flag(LT|GT))) => (MOVDconst [1])
   924  
   925  (SETBC [0] (InvertFlags bool)) => (SETBC [1] bool)
   926  (SETBC [1] (InvertFlags bool)) => (SETBC [0] bool)
   927  (SETBC [2] (InvertFlags bool)) => (SETBC [2] bool)
   928  
   929  (SETBCR [0] (InvertFlags bool)) => (SETBCR [1] bool)
   930  (SETBCR [1] (InvertFlags bool)) => (SETBCR [0] bool)
   931  (SETBCR [2] (InvertFlags bool)) => (SETBCR [2] bool)
   932  
   933  // ISEL auxInt values 0=LT 1=GT 2=EQ   arg2 ? arg0 : arg1
   934  // ISEL auxInt values 4=GE 5=LE 6=NE   !arg2 ? arg1 : arg0
   935  
   936  (ISEL [2] x _ (FlagEQ)) => x
   937  (ISEL [2] _ y (Flag(LT|GT))) => y
   938  
   939  (ISEL [6] _ y (FlagEQ)) => y
   940  (ISEL [6] x _ (Flag(LT|GT))) => x
   941  
   942  (ISEL [0] _ y (Flag(EQ|GT))) => y
   943  (ISEL [0] x _ (FlagLT)) => x
   944  
   945  (ISEL [5] _ x (Flag(EQ|LT))) => x
   946  (ISEL [5] y _ (FlagGT)) => y
   947  
   948  (ISEL [1] _ y (Flag(EQ|LT))) => y
   949  (ISEL [1] x _ (FlagGT)) => x
   950  
   951  (ISEL [4] x _ (Flag(EQ|GT))) => x
   952  (ISEL [4] _ y (FlagLT)) => y
   953  
   954  (SETBC [n] (InvertFlags bool)) => (SETBCR [n] bool)
   955  (SETBCR [n] (InvertFlags bool)) => (SETBC [n] bool)
   956  
   957  (ISEL [n] x y (InvertFlags bool)) && n%4 == 0 => (ISEL [n+1] x y bool)
   958  (ISEL [n] x y (InvertFlags bool)) && n%4 == 1 => (ISEL [n-1] x y bool)
   959  (ISEL [n] x y (InvertFlags bool)) && n%4 == 2 => (ISEL [n] x y bool)
   960  (XORconst [1] (SETBCR [n] cmp)) => (SETBC [n] cmp)
   961  (XORconst [1] (SETBC [n] cmp)) => (SETBCR [n] cmp)
   962  
   963  (SETBC  [2] (CMPconst [0] a:(ANDconst [1] _))) => (XORconst [1] a)
   964  (SETBCR [2] (CMPconst [0] a:(ANDconst [1] _))) => a
   965  
   966  // Only CMPconst for these in case AND|OR|XOR result is > 32 bits
   967  (SETBC [2] (CMPconst [0] a:(AND y z))) && a.Uses == 1 => (SETBC [2] (Select1 <types.TypeFlags> (ANDCC y z )))
   968  (SETBCR [2] (CMPconst [0] a:(AND y z))) && a.Uses == 1 => (SETBCR [2] (Select1 <types.TypeFlags> (ANDCC y z )))
   969  
   970  (SETBC [2] (CMPconst [0] o:(OR y z))) && o.Uses == 1 => (SETBC [2] (Select1 <types.TypeFlags> (ORCC y z )))
   971  (SETBCR [2] (CMPconst [0] o:(OR y z))) && o.Uses == 1 => (SETBCR [2] (Select1 <types.TypeFlags> (ORCC y z )))
   972  
   973  (SETBC [2] (CMPconst [0] a:(XOR y z))) && a.Uses == 1 => (SETBC [2] (Select1 <types.TypeFlags> (XORCC y z )))
   974  (SETBCR [2] (CMPconst [0] a:(XOR y z))) && a.Uses == 1 => (SETBCR [2] (Select1 <types.TypeFlags> (XORCC y z )))
   975  
   976  // A particular pattern seen in cgo code:
   977  (AND (MOVDconst [c]) x:(MOVBZload _ _)) => (ANDconst [c&0xFF] x)
   978  
   979  // floating point negative abs
   980  (FNEG (F(ABS|NABS) x)) => (F(NABS|ABS) x)
   981  
   982  // floating-point fused multiply-add/sub
   983  (F(ADD|SUB) (FMUL x y) z) && x.Block.Func.useFMA(v) => (FM(ADD|SUB) x y z)
   984  (F(ADDS|SUBS) (FMULS x y) z) && x.Block.Func.useFMA(v) => (FM(ADDS|SUBS) x y z)
   985  
   986  // Arch-specific inlining for small or disjoint runtime.memmove
   987  (SelectN [0] call:(CALLstatic {sym} s1:(MOVDstore _ (MOVDconst [sz]) s2:(MOVDstore  _ src s3:(MOVDstore {t} _ dst mem)))))
   988          && sz >= 0
   989          && isSameCall(sym, "runtime.memmove")
   990          && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
   991          && isInlinableMemmove(dst, src, sz, config)
   992          && clobber(s1, s2, s3, call)
   993          => (Move [sz] dst src mem)
   994  
   995  // Match post-lowering calls, register version.
   996  (SelectN [0] call:(CALLstatic {sym} dst src (MOVDconst [sz]) mem))
   997          && sz >= 0
   998          && isSameCall(sym, "runtime.memmove")
   999          && call.Uses == 1
  1000          && isInlinableMemmove(dst, src, sz, config)
  1001          && clobber(call)
  1002          => (Move [sz] dst src mem)
  1003  
  1004  // Prefetch instructions (TH specified using aux field)
  1005  // For DCBT Ra,Rb,TH, A value of TH indicates:
  1006  //     0, hint this cache line will be used soon. (PrefetchCache)
  1007  //     16, hint this cache line will not be used for long. (PrefetchCacheStreamed)
  1008  // See ISA 3.0 Book II 4.3.2 for more detail. https://openpower.foundation/specifications/isa/
  1009  (PrefetchCache ptr mem)          => (DCBT ptr mem [0])
  1010  (PrefetchCacheStreamed ptr mem)  => (DCBT ptr mem [16])
  1011  
  1012  // Use byte reverse instructions on Power10
  1013  (Bswap(16|32|64) x) && buildcfg.GOPPC64>=10 => (BR(H|W|D) x)
  1014  
  1015  // Fold bit reversal into loads.
  1016  (BR(W|H) x:(MOV(W|H)Zload [off] {sym} ptr mem)) && x.Uses == 1 => @x.Block (MOV(W|H)BRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1017  (BR(W|H) x:(MOV(W|H)Zloadidx ptr idx      mem)) && x.Uses == 1 => @x.Block (MOV(W|H)BRloadidx ptr idx mem)
  1018  (BRD x:(MOVDload [off] {sym} ptr mem)) && x.Uses == 1 => @x.Block (MOVDBRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1019  (BRD x:(MOVDloadidx ptr idx      mem)) && x.Uses == 1 => @x.Block (MOVDBRloadidx ptr idx mem)
  1020  
  1021  // Fold bit reversal into stores.
  1022  (MOV(D|W|H)store [off] {sym} ptr r:(BR(D|W|H) val) mem) && r.Uses == 1 => (MOV(D|W|H)BRstore (MOVDaddr <ptr.Type> [off] {sym} ptr) val mem)
  1023  (MOV(D|W|H)storeidx ptr idx      r:(BR(D|W|H) val) mem) && r.Uses == 1 => (MOV(D|W|H)BRstoreidx ptr idx val mem)
  1024  
  1025  // GOPPC64<10 rules.
  1026  // These Bswap operations should only be introduced by the memcombine pass in places where they can be folded into loads or stores.
  1027  (Bswap(32|16) x:(MOV(W|H)Zload [off] {sym} ptr mem)) => @x.Block (MOV(W|H)BRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1028  (Bswap(32|16) x:(MOV(W|H)Zloadidx ptr idx      mem)) => @x.Block (MOV(W|H)BRloadidx ptr idx mem)
  1029  (Bswap64 x:(MOVDload [off] {sym} ptr mem)) => @x.Block (MOVDBRload (MOVDaddr <ptr.Type> [off] {sym} ptr) mem)
  1030  (Bswap64 x:(MOVDloadidx ptr idx      mem)) => @x.Block (MOVDBRloadidx ptr idx mem)
  1031  (MOV(D|W|H)store [off] {sym} ptr (Bswap(64|32|16) val) mem) => (MOV(D|W|H)BRstore (MOVDaddr <ptr.Type> [off] {sym} ptr) val mem)
  1032  (MOV(D|W|H)storeidx ptr idx      (Bswap(64|32|16) val) mem) => (MOV(D|W|H)BRstoreidx ptr idx val mem)
  1033  

View as plain text