Package ir
Overview ▸
Index ▸
Constants
const ( EscUnknown = iota EscNone // Does not escape to heap, result, or parameters. EscHeap // Reachable from the heap EscNever // By construction will not escape. )
const ( // Maximum size in bits for big.Ints before signaling // overflow and also mantissa precision for big.Floats. ConstPrec = 512 )
Variables
var ( // MaxStackVarSize is the maximum size variable which we will allocate on the stack. // This limit is for explicit variable declarations like "var x T" or "x := ...". // Note: the flag smallframes can update this value. MaxStackVarSize = int64(128 * 1024) // MaxImplicitStackVarSize is the maximum size of implicit variables that we will allocate on the stack. // p := new(T) allocating T on the stack // p := &T{} allocating T on the stack // s := make([]T, n) allocating [n]T on the stack // s := []byte("...") allocating [n]byte on the stack // Note: the flag smallframes can update this value. MaxImplicitStackVarSize = int64(64 * 1024) // MaxSmallArraySize is the maximum size of an array which is considered small. // Small arrays will be initialized directly with a sequence of constant stores. // Large arrays will be initialized by copying from a static temp. // 256 bytes was chosen to minimize generated code + statictmp size. MaxSmallArraySize = int64(256) )
EscFmt is set by the escape analysis code to add escape analysis details to the node print.
var EscFmt func(n Node) string
IsIntrinsicCall reports whether the compiler back end will treat the call as an intrinsic operation.
var IsIntrinsicCall = func(*CallExpr) bool { return false }
var OKForConst [types.NTYPE]bool
var OpNames = []string{
OADDR: "&",
OADD: "+",
OADDSTR: "+",
OANDAND: "&&",
OANDNOT: "&^",
OAND: "&",
OAPPEND: "append",
OAS: "=",
OAS2: "=",
OBREAK: "break",
OCALL: "function call",
OCAP: "cap",
OCASE: "case",
OCLEAR: "clear",
OCLOSE: "close",
OCOMPLEX: "complex",
OBITNOT: "^",
OCONTINUE: "continue",
OCOPY: "copy",
ODELETE: "delete",
ODEFER: "defer",
ODIV: "/",
OEQ: "==",
OFALL: "fallthrough",
OFOR: "for",
OGE: ">=",
OGOTO: "goto",
OGT: ">",
OIF: "if",
OIMAG: "imag",
OINLMARK: "inlmark",
ODEREF: "*",
OLEN: "len",
OLE: "<=",
OLSH: "<<",
OLT: "<",
OMAKE: "make",
ONEG: "-",
OMAX: "max",
OMIN: "min",
OMOD: "%",
OMUL: "*",
ONEW: "new",
ONE: "!=",
ONOT: "!",
OOROR: "||",
OOR: "|",
OPANIC: "panic",
OPLUS: "+",
OPRINTLN: "println",
OPRINT: "print",
ORANGE: "range",
OREAL: "real",
ORECV: "<-",
ORECOVER: "recover",
ORETURN: "return",
ORSH: ">>",
OSELECT: "select",
OSEND: "<-",
OSUB: "-",
OSWITCH: "switch",
OUNSAFEADD: "unsafe.Add",
OUNSAFESLICE: "unsafe.Slice",
OUNSAFESLICEDATA: "unsafe.SliceData",
OUNSAFESTRING: "unsafe.String",
OUNSAFESTRINGDATA: "unsafe.StringData",
OXOR: "^",
}
var OpPrec = []int{
OAPPEND: 8,
OBYTES2STR: 8,
OARRAYLIT: 8,
OSLICELIT: 8,
ORUNES2STR: 8,
OCALLFUNC: 8,
OCALLINTER: 8,
OCALLMETH: 8,
OCALL: 8,
OCAP: 8,
OCLEAR: 8,
OCLOSE: 8,
OCOMPLIT: 8,
OCONVIFACE: 8,
OCONVNOP: 8,
OCONV: 8,
OCOPY: 8,
ODELETE: 8,
OGETG: 8,
OLEN: 8,
OLITERAL: 8,
OMAKESLICE: 8,
OMAKESLICECOPY: 8,
OMAKE: 8,
OMAPLIT: 8,
OMAX: 8,
OMIN: 8,
ONAME: 8,
ONEW: 8,
ONIL: 8,
ONONAME: 8,
OPANIC: 8,
OPAREN: 8,
OPRINTLN: 8,
OPRINT: 8,
ORUNESTR: 8,
OSLICE2ARR: 8,
OSLICE2ARRPTR: 8,
OSTR2BYTES: 8,
OSTR2RUNES: 8,
OSTRUCTLIT: 8,
OTYPE: 8,
OUNSAFEADD: 8,
OUNSAFESLICE: 8,
OUNSAFESLICEDATA: 8,
OUNSAFESTRING: 8,
OUNSAFESTRINGDATA: 8,
OINDEXMAP: 8,
OINDEX: 8,
OSLICE: 8,
OSLICESTR: 8,
OSLICEARR: 8,
OSLICE3: 8,
OSLICE3ARR: 8,
OSLICEHEADER: 8,
OSTRINGHEADER: 8,
ODOTINTER: 8,
ODOTMETH: 8,
ODOTPTR: 8,
ODOTTYPE2: 8,
ODOTTYPE: 8,
ODOT: 8,
OXDOT: 8,
OMETHVALUE: 8,
OMETHEXPR: 8,
OPLUS: 7,
ONOT: 7,
OBITNOT: 7,
ONEG: 7,
OADDR: 7,
ODEREF: 7,
ORECV: 7,
OMUL: 6,
ODIV: 6,
OMOD: 6,
OLSH: 6,
ORSH: 6,
OAND: 6,
OANDNOT: 6,
OADD: 5,
OSUB: 5,
OOR: 5,
OXOR: 5,
OEQ: 4,
OLT: 4,
OLE: 4,
OGE: 4,
OGT: 4,
ONE: 4,
OSEND: 3,
OANDAND: 2,
OOROR: 1,
OAS: -1,
OAS2: -1,
OAS2DOTTYPE: -1,
OAS2FUNC: -1,
OAS2MAPR: -1,
OAS2RECV: -1,
OASOP: -1,
OBLOCK: -1,
OBREAK: -1,
OCASE: -1,
OCONTINUE: -1,
ODCL: -1,
ODEFER: -1,
OFALL: -1,
OFOR: -1,
OGOTO: -1,
OIF: -1,
OLABEL: -1,
OGO: -1,
ORANGE: -1,
ORETURN: -1,
OSELECT: -1,
OSWITCH: -1,
OEND: 0,
}
Pkgs holds known packages.
var Pkgs struct {
Go *types.Pkg
Itab *types.Pkg
Runtime *types.Pkg
InternalMaps *types.Pkg
Coverage *types.Pkg
}
Syms holds known symbols.
var Syms symsStruct
func Any
func Any(n Node, cond func(Node) bool) bool
Any looks for a non-nil node x in the IR tree rooted at n for which cond(x) returns true. Any considers nodes in a depth-first, preorder traversal. When Any finds a node x such that cond(x) is true, Any ends the traversal and returns true immediately. Otherwise Any returns false after completing the entire traversal.
func AnyList
func AnyList(list Nodes, cond func(Node) bool) bool
AnyList calls Any(x, cond) for each node x in the list, in order. If any call returns true, AnyList stops and returns true. Otherwise, AnyList returns false after calling Any(x, cond) for every x in the list.
func AssertValidTypeForConst
func AssertValidTypeForConst(t *types.Type, v constant.Value)
func BigFloat
func BigFloat(v constant.Value) *big.Float
func BoolVal
func BoolVal(n Node) bool
BoolVal returns n as a bool. n must be a boolean constant.
func ClosureDebugRuntimeCheck
func ClosureDebugRuntimeCheck(clo *ClosureExpr)
ClosureDebugRuntimeCheck applies boilerplate checks for debug flags and compiling runtime.
func ConstOverflow
func ConstOverflow(v constant.Value, t *types.Type) bool
ConstOverflow reports whether constant value v is too large to represent with type t.
func ConstType
func ConstType(n Node) constant.Kind
func DeclaredBy
func DeclaredBy(x, stmt Node) bool
DeclaredBy reports whether expression x refers (directly) to a variable that was declared by the given statement.
func DoChildren
func DoChildren(n Node, do func(Node) bool) bool
DoChildren calls do(x) on each of n's non-nil child nodes x. If any call returns true, DoChildren stops and returns true. Otherwise, DoChildren returns false.
Note that DoChildren(n, do) only calls do(x) for n's immediate children. If x's children should be processed, then do(x) must call DoChildren(x, do).
DoChildren allows constructing general traversals of the IR graph that can stop early if needed. The most general usage is:
var do func(ir.Node) bool do = func(x ir.Node) bool { ... processing BEFORE visiting children ... if ... should visit children ... { ir.DoChildren(x, do) ... processing AFTER visiting children ... } if ... should stop parent DoChildren call from visiting siblings ... { return true } return false } do(root)
Since DoChildren does not return true itself, if the do function never wants to stop the traversal, it can assume that DoChildren itself will always return false, simplifying to:
var do func(ir.Node) bool do = func(x ir.Node) bool { ... processing BEFORE visiting children ... if ... should visit children ... { ir.DoChildren(x, do) } ... processing AFTER visiting children ... return false } do(root)
The Visit function illustrates a further simplification of the pattern, only processing before visiting children and never stopping:
func Visit(n ir.Node, visit func(ir.Node)) { if n == nil { return } var do func(ir.Node) bool do = func(x ir.Node) bool { visit(x) return ir.DoChildren(x, do) } do(n) }
The Any function illustrates a different simplification of the pattern, visiting each node and then its children, recursively, until finding a node x for which cond(x) returns true, at which point the entire traversal stops and returns true.
func Any(n ir.Node, cond(ir.Node) bool) bool { if n == nil { return false } var do func(ir.Node) bool do = func(x ir.Node) bool { return cond(x) || ir.DoChildren(x, do) } return do(n) }
Visit and Any are presented above as examples of how to use DoChildren effectively, but of course, usage that fits within the simplifications captured by Visit or Any will be best served by directly calling the ones provided by this package.
func DoChildrenWithHidden
func DoChildrenWithHidden(n Node, do func(Node) bool) bool
DoChildrenWithHidden is like DoChildren, but also visits Node-typed fields tagged with `mknode:"-"`.
TODO(mdempsky): Remove the `mknode:"-"` tags so this function can go away.
func Dump
func Dump(s string, n Node)
Dump prints the message s followed by a debug dump of n.
func DumpAny
func DumpAny(root interface{}, filter string, depth int)
DumpAny is like FDumpAny but prints to stderr.
func DumpList
func DumpList(s string, list Nodes)
DumpList prints the message s followed by a debug dump of each node in the list.
func EditChildren
func EditChildren(n Node, edit func(Node) Node)
EditChildren edits the child nodes of n, replacing each child x with edit(x).
Note that EditChildren(n, edit) only calls edit(x) for n's immediate children. If x's children should be processed, then edit(x) must call EditChildren(x, edit).
EditChildren allows constructing general editing passes of the IR graph. The most general usage is:
var edit func(ir.Node) ir.Node edit = func(x ir.Node) ir.Node { ... processing BEFORE editing children ... if ... should edit children ... { EditChildren(x, edit) ... processing AFTER editing children ... } ... return x ... } n = edit(n)
EditChildren edits the node in place. To edit a copy, call Copy first. As an example, a simple deep copy implementation would be:
func deepCopy(n ir.Node) ir.Node { var edit func(ir.Node) ir.Node edit = func(x ir.Node) ir.Node { x = ir.Copy(x) ir.EditChildren(x, edit) return x } return edit(n) }
Of course, in this case it is better to call ir.DeepCopy than to build one anew.
func EditChildrenWithHidden
func EditChildrenWithHidden(n Node, edit func(Node) Node)
EditChildrenWithHidden is like EditChildren, but also edits Node-typed fields tagged with `mknode:"-"`.
TODO(mdempsky): Remove the `mknode:"-"` tags so this function can go away.
func FDumpAny
func FDumpAny(w io.Writer, root interface{}, filter string, depth int)
FDumpAny prints the structure of a rooted data structure to w by depth-first traversal of the data structure.
The filter parameter is a regular expression. If it is non-empty, only struct fields whose names match filter are printed.
The depth parameter controls how deep traversal recurses before it returns (higher value means greater depth). If an empty field filter is given, a good depth default value is 4. A negative depth means no depth limit, which may be fine for small data structures or if there is a non-empty filter.
In the output, Node structs are identified by their Op name rather than their type; struct fields with zero values or non-matching field names are omitted, and "…" means recursion depth has been reached or struct fields have been omitted.
func FDumpList
func FDumpList(w io.Writer, s string, list Nodes)
FDumpList prints to w the message s followed by a debug dump of each node in the list.
func FuncName
func FuncName(f *Func) string
FuncName returns the name (without the package) of the function f.
func FuncSymName
func FuncSymName(s *types.Sym) string
func HasUniquePos
func HasUniquePos(n Node) bool
HasUniquePos reports whether n has a unique position that can be used for reporting error messages.
It's primarily used to distinguish references to named objects, whose Pos will point back to their declaration position rather than their usage position.
func InitLSym
func InitLSym(f *Func, hasBody bool)
InitLSym defines f's obj.LSym and initializes it based on the properties of f. This includes setting the symbol flags and ABI and creating and initializing related DWARF symbols.
InitLSym must be called exactly once per function and must be called for both functions with bodies and functions without bodies. For body-less functions, we only create the LSym; for functions with bodies call a helper to setup up / populate the LSym.
func Int64Val
func Int64Val(n Node) int64
Int64Val returns n as an int64. n must be an integer or rune constant.
func IntVal
func IntVal(t *types.Type, v constant.Value) int64
IntVal returns v converted to int64. Note: if t is uint64, very large values will be converted to negative int64.
func IsAddressable
func IsAddressable(n Node) bool
lvalue etc
func IsAutoTmp
func IsAutoTmp(n Node) bool
IsAutoTmp indicates if n was created by the compiler as a temporary, based on the setting of the .AutoTemp flag in n's Name.
func IsBlank
func IsBlank(n Node) bool
func IsConst
func IsConst(n Node, ct constant.Kind) bool
func IsConstNode
func IsConstNode(n Node) bool
IsConstNode reports whether n is a Go language constant (as opposed to a compile-time constant).
Expressions derived from nil, like string([]byte(nil)), while they may be known at compile time, are not Go language constants.
func IsFuncPCIntrinsic
func IsFuncPCIntrinsic(n *CallExpr) bool
IsFuncPCIntrinsic returns whether n is a direct call of internal/abi.FuncPCABIxxx functions.
func IsMethod
func IsMethod(n Node) bool
IsMethod reports whether n is a method. n must be a function or a method.
func IsNil
func IsNil(n Node) bool
IsNil reports whether n represents the universal untyped zero value "nil".
func IsReflectHeaderDataField
func IsReflectHeaderDataField(l Node) bool
IsReflectHeaderDataField reports whether l is an expression p.Data where p has type reflect.SliceHeader or reflect.StringHeader.
func IsSmallIntConst
func IsSmallIntConst(n Node) bool
func IsSynthetic
func IsSynthetic(n Node) bool
func IsZero
func IsZero(n Node) bool
func Line
func Line(n Node) string
Line returns n's position as a string. If n has been inlined, it uses the outermost position where n has been inlined.
func LinkFuncName
func LinkFuncName(f *Func) string
LinkFuncName returns the name of the function f, as it will appear in the symbol table of the final linked binary.
func LookupMethodSelector
func LookupMethodSelector(pkg *types.Pkg, name string) (typ, meth *types.Sym, err error)
LookupMethodSelector returns the types.Sym of the selector for a method named in local symbol name, as well as the types.Sym of the receiver.
TODO(prattmic): this does not attempt to handle method suffixes (wrappers).
func MayBeShared
func MayBeShared(n Node) bool
MayBeShared reports whether n may occur in multiple places in the AST. Extra care must be taken when mutating such a node.
func MethodExprFunc
func MethodExprFunc(n Node) *types.Field
MethodExprFunc is like MethodExprName, but returns the types.Field instead.
func MethodSym
func MethodSym(recv *types.Type, msym *types.Sym) *types.Sym
MethodSym returns the method symbol representing a method name associated with a specific receiver type.
Method symbols can be used to distinguish the same method appearing in different method sets. For example, T.M and (*T).M have distinct method symbols.
The returned symbol will be marked as a function.
func MethodSymSuffix
func MethodSymSuffix(recv *types.Type, msym *types.Sym, suffix string) *types.Sym
MethodSymSuffix is like MethodSym, but allows attaching a distinguisher suffix. To avoid collisions, the suffix must not start with a letter, number, or period.
func ParseLinkFuncName
func ParseLinkFuncName(name string) (pkg, sym string, err error)
ParseLinkFuncName parsers a symbol name (as returned from LinkFuncName) back to the package path and local symbol name.
func PkgFuncName
func PkgFuncName(f *Func) string
PkgFuncName returns the name of the function referenced by f, with package prepended.
This differs from the compiler's internal convention where local functions lack a package. This is primarily useful when the ultimate consumer of this is a human looking at message.
func Reassigned
func Reassigned(name *Name) bool
Reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean indicating whether the name has any assignments other than its declaration. NB: global variables are always considered to be re-assigned. TODO: handle initial declaration not including an assignment and followed by a single assignment? NOTE: any changes made here should also be made in the corresponding code in the ReassignOracle.Init method.
func SameSafeExpr
func SameSafeExpr(l Node, r Node) bool
SameSafeExpr checks whether it is safe to reuse one of l and r instead of computing both. SameSafeExpr assumes that l and r are used in the same statement or expression. In order for it to be safe to reuse l or r, they must:
- be the same expression
- not have side-effects (no function calls, no channel ops); however, panics are ok
- not cause inappropriate aliasing; e.g. two string to []byte conversions, must result in two distinct slices
The handling of OINDEXMAP is subtle. OINDEXMAP can occur both as an lvalue (map assignment) and an rvalue (map access). This is currently OK, since the only place SameSafeExpr gets used on an lvalue expression is for OSLICE and OAPPEND optimizations, and it is correct in those settings.
func SameSource
func SameSource(n1, n2 Node) bool
SameSource reports whether two nodes refer to the same source element.
It exists to help incrementally migrate the compiler towards allowing the introduction of IdentExpr (#42990). Once we have IdentExpr, it will no longer be safe to directly compare Node values to tell if they refer to the same Name. Instead, code will need to explicitly get references to the underlying Name object(s), and compare those instead.
It will still be safe to compare Nodes directly for checking if two nodes are syntactically the same. The SameSource function exists to indicate code that intentionally compares Nodes for syntactic equality as opposed to code that has yet to be updated in preparation for IdentExpr.
func SetPos
func SetPos(n Node) src.XPos
func ShouldAsanCheckPtr
func ShouldAsanCheckPtr(fn *Func) bool
ShouldAsanCheckPtr reports whether pointer checking should be enabled for function fn when -asan is enabled.
func ShouldCheckPtr
func ShouldCheckPtr(fn *Func, level int) bool
ShouldCheckPtr reports whether pointer checking should be enabled for function fn at a given level. See debugHelpFooter for defined levels.
func StmtWithInit
func StmtWithInit(op Op) bool
StmtWithInit reports whether op is a statement with an explicit init list.
func StringVal
func StringVal(n Node) string
StringVal returns the value of a literal string Node as a string. n must be a string constant.
func Uint64Val
func Uint64Val(n Node) uint64
Uint64Val returns n as a uint64. n must be an integer or rune constant.
func Uses
func Uses(x Node, v *Name) bool
Uses reports whether expression x is a (direct) use of the given variable.
func ValidTypeForConst
func ValidTypeForConst(t *types.Type, v constant.Value) bool
func Visit
func Visit(n Node, visit func(Node))
Visit visits each non-nil node x in the IR tree rooted at n in a depth-first preorder traversal, calling visit on each node visited.
func VisitFuncAndClosures
func VisitFuncAndClosures(fn *Func, visit func(n Node))
VisitFuncAndClosures calls visit on each non-nil node in fn.Body, including any nested closure bodies.
func VisitFuncsBottomUp
func VisitFuncsBottomUp(list []*Func, analyze func(list []*Func, recursive bool))
VisitFuncsBottomUp invokes analyze on the ODCLFUNC nodes listed in list. It calls analyze with successive groups of functions, working from the bottom of the call graph upward. Each time analyze is called with a list of functions, every function on that list only calls other functions on the list or functions that have been passed in previous invocations of analyze. Closures appear in the same list as their outer functions. The lists are as short as possible while preserving those requirements. (In a typical program, many invocations of analyze will be passed just a single function.) The boolean argument 'recursive' passed to analyze specifies whether the functions on the list are mutually recursive. If recursive is false, the list consists of only a single function and its closures. If recursive is true, the list may still contain only a single function, if that function is itself recursive.
func VisitList
func VisitList(list Nodes, visit func(Node))
VisitList calls Visit(x, visit) for each node x in the list.
func WithFunc
func WithFunc(curfn *Func, do func())
WithFunc invokes do with CurFunc and base.Pos set to curfn and curfn.Pos(), respectively, and then restores their previous values before returning.
type AddStringExpr
An AddStringExpr is a string concatenation List[0] + List[1] + ... + List[len(List)-1].
type AddStringExpr struct {
List Nodes
Prealloc *Name
// contains filtered or unexported fields
}
func NewAddStringExpr
func NewAddStringExpr(pos src.XPos, list []Node) *AddStringExpr
func (*AddStringExpr) Bounded
func (n *AddStringExpr) Bounded() bool
func (*AddStringExpr) Format
func (n *AddStringExpr) Format(s fmt.State, verb rune)
func (*AddStringExpr) Init
func (n *AddStringExpr) Init() Nodes
func (*AddStringExpr) MarkNonNil
func (n *AddStringExpr) MarkNonNil()
func (*AddStringExpr) NonNil
func (n *AddStringExpr) NonNil() bool
func (*AddStringExpr) PtrInit
func (n *AddStringExpr) PtrInit() *Nodes
func (*AddStringExpr) SetBounded
func (n *AddStringExpr) SetBounded(b bool)
func (*AddStringExpr) SetInit
func (n *AddStringExpr) SetInit(x Nodes)
func (*AddStringExpr) SetTransient
func (n *AddStringExpr) SetTransient(b bool)
func (*AddStringExpr) SetType
func (n *AddStringExpr) SetType(x *types.Type)
func (*AddStringExpr) Transient
func (n *AddStringExpr) Transient() bool
func (*AddStringExpr) Type
func (n *AddStringExpr) Type() *types.Type
type AddrExpr
An AddrExpr is an address-of expression &X. It may end up being a normal address-of or an allocation of a composite literal.
type AddrExpr struct { X Node Prealloc *Name // preallocated storage if any // contains filtered or unexported fields }
func NewAddrExpr
func NewAddrExpr(pos src.XPos, x Node) *AddrExpr
func (*AddrExpr) Bounded
func (n *AddrExpr) Bounded() bool
func (*AddrExpr) Format
func (n *AddrExpr) Format(s fmt.State, verb rune)
func (*AddrExpr) Implicit
func (n *AddrExpr) Implicit() bool
func (*AddrExpr) Init
func (n *AddrExpr) Init() Nodes
func (*AddrExpr) MarkNonNil
func (n *AddrExpr) MarkNonNil()
func (*AddrExpr) NonNil
func (n *AddrExpr) NonNil() bool
func (*AddrExpr) PtrInit
func (n *AddrExpr) PtrInit() *Nodes
func (*AddrExpr) SetBounded
func (n *AddrExpr) SetBounded(b bool)
func (*AddrExpr) SetImplicit
func (n *AddrExpr) SetImplicit(b bool)
func (*AddrExpr) SetInit
func (n *AddrExpr) SetInit(x Nodes)
func (*AddrExpr) SetOp
func (n *AddrExpr) SetOp(op Op)
func (*AddrExpr) SetTransient
func (n *AddrExpr) SetTransient(b bool)
func (*AddrExpr) SetType
func (n *AddrExpr) SetType(x *types.Type)
func (*AddrExpr) Transient
func (n *AddrExpr) Transient() bool
func (*AddrExpr) Type
func (n *AddrExpr) Type() *types.Type
type AssignListStmt
An AssignListStmt is an assignment statement with more than one item on at least one side: Lhs = Rhs. If Def is true, the assignment is a :=.
type AssignListStmt struct {
Lhs Nodes
Def bool
Rhs Nodes
// contains filtered or unexported fields
}
func NewAssignListStmt
func NewAssignListStmt(pos src.XPos, op Op, lhs, rhs []Node) *AssignListStmt
func (*AssignListStmt) Format
func (n *AssignListStmt) Format(s fmt.State, verb rune)
func (*AssignListStmt) Init
func (n *AssignListStmt) Init() Nodes
func (*AssignListStmt) PtrInit
func (n *AssignListStmt) PtrInit() *Nodes
func (*AssignListStmt) SetInit
func (n *AssignListStmt) SetInit(x Nodes)
func (*AssignListStmt) SetOp
func (n *AssignListStmt) SetOp(op Op)
type AssignOpStmt
An AssignOpStmt is an AsOp= assignment statement: X AsOp= Y.
type AssignOpStmt struct { X Node AsOp Op // OADD etc Y Node IncDec bool // actually ++ or -- // contains filtered or unexported fields }
func NewAssignOpStmt
func NewAssignOpStmt(pos src.XPos, asOp Op, x, y Node) *AssignOpStmt
func (*AssignOpStmt) Format
func (n *AssignOpStmt) Format(s fmt.State, verb rune)
func (*AssignOpStmt) Init
func (n *AssignOpStmt) Init() Nodes
func (*AssignOpStmt) PtrInit
func (n *AssignOpStmt) PtrInit() *Nodes
func (*AssignOpStmt) SetInit
func (n *AssignOpStmt) SetInit(x Nodes)
type AssignStmt
An AssignStmt is a simple assignment statement: X = Y. If Def is true, the assignment is a :=.
type AssignStmt struct {
X Node
Def bool
Y Node
// contains filtered or unexported fields
}
func NewAssignStmt
func NewAssignStmt(pos src.XPos, x, y Node) *AssignStmt
func (*AssignStmt) Format
func (n *AssignStmt) Format(s fmt.State, verb rune)
func (*AssignStmt) Init
func (n *AssignStmt) Init() Nodes
func (*AssignStmt) PtrInit
func (n *AssignStmt) PtrInit() *Nodes
func (*AssignStmt) SetInit
func (n *AssignStmt) SetInit(x Nodes)
func (*AssignStmt) SetOp
func (n *AssignStmt) SetOp(op Op)
type BasicLit
A BasicLit is a literal of basic type.
type BasicLit struct {
// contains filtered or unexported fields
}
func (*BasicLit) Bounded
func (n *BasicLit) Bounded() bool
func (*BasicLit) Format
func (n *BasicLit) Format(s fmt.State, verb rune)
func (*BasicLit) Init
func (n *BasicLit) Init() Nodes
func (*BasicLit) MarkNonNil
func (n *BasicLit) MarkNonNil()
func (*BasicLit) NonNil
func (n *BasicLit) NonNil() bool
func (*BasicLit) PtrInit
func (n *BasicLit) PtrInit() *Nodes
func (*BasicLit) SetBounded
func (n *BasicLit) SetBounded(b bool)
func (*BasicLit) SetInit
func (n *BasicLit) SetInit(x Nodes)
func (*BasicLit) SetTransient
func (n *BasicLit) SetTransient(b bool)
func (*BasicLit) SetType
func (n *BasicLit) SetType(x *types.Type)
func (*BasicLit) SetVal
func (n *BasicLit) SetVal(val constant.Value)
func (*BasicLit) Transient
func (n *BasicLit) Transient() bool
func (*BasicLit) Type
func (n *BasicLit) Type() *types.Type
func (*BasicLit) Val
func (n *BasicLit) Val() constant.Value
type BinaryExpr
A BinaryExpr is a binary expression X Op Y, or Op(X, Y) for builtin functions that do not become calls.
type BinaryExpr struct { X Node Y Node RType Node `mknode:"-"` // see reflectdata/helpers.go // contains filtered or unexported fields }
func NewBinaryExpr
func NewBinaryExpr(pos src.XPos, op Op, x, y Node) *BinaryExpr
func (*BinaryExpr) Bounded
func (n *BinaryExpr) Bounded() bool
func (*BinaryExpr) Format
func (n *BinaryExpr) Format(s fmt.State, verb rune)
func (*BinaryExpr) Init
func (n *BinaryExpr) Init() Nodes
func (*BinaryExpr) MarkNonNil
func (n *BinaryExpr) MarkNonNil()
func (*BinaryExpr) NonNil
func (n *BinaryExpr) NonNil() bool
func (*BinaryExpr) PtrInit
func (n *BinaryExpr) PtrInit() *Nodes
func (*BinaryExpr) SetBounded
func (n *BinaryExpr) SetBounded(b bool)
func (*BinaryExpr) SetInit
func (n *BinaryExpr) SetInit(x Nodes)
func (*BinaryExpr) SetOp
func (n *BinaryExpr) SetOp(op Op)
func (*BinaryExpr) SetTransient
func (n *BinaryExpr) SetTransient(b bool)
func (*BinaryExpr) SetType
func (n *BinaryExpr) SetType(x *types.Type)
func (*BinaryExpr) Transient
func (n *BinaryExpr) Transient() bool
func (*BinaryExpr) Type
func (n *BinaryExpr) Type() *types.Type
type BlockStmt
A BlockStmt is a block: { List }.
type BlockStmt struct {
List Nodes
// contains filtered or unexported fields
}
func NewBlockStmt
func NewBlockStmt(pos src.XPos, list []Node) *BlockStmt
func (*BlockStmt) Format
func (n *BlockStmt) Format(s fmt.State, verb rune)
func (*BlockStmt) Init
func (n *BlockStmt) Init() Nodes
func (*BlockStmt) PtrInit
func (n *BlockStmt) PtrInit() *Nodes
func (*BlockStmt) SetInit
func (n *BlockStmt) SetInit(x Nodes)
type BranchStmt
A BranchStmt is a break, continue, fallthrough, or goto statement.
type BranchStmt struct { Label *types.Sym // label if present // contains filtered or unexported fields }
func NewBranchStmt
func NewBranchStmt(pos src.XPos, op Op, label *types.Sym) *BranchStmt
func (*BranchStmt) Format
func (n *BranchStmt) Format(s fmt.State, verb rune)
func (*BranchStmt) Init
func (n *BranchStmt) Init() Nodes
func (*BranchStmt) PtrInit
func (n *BranchStmt) PtrInit() *Nodes
func (*BranchStmt) SetInit
func (n *BranchStmt) SetInit(x Nodes)
func (*BranchStmt) SetOp
func (n *BranchStmt) SetOp(op Op)
func (*BranchStmt) Sym
func (n *BranchStmt) Sym() *types.Sym
type CallExpr
A CallExpr is a function call Fun(Args).
type CallExpr struct { Fun Node Args Nodes DeferAt Node RType Node `mknode:"-"` // see reflectdata/helpers.go KeepAlive []*Name // vars to be kept alive until call returns IsDDD bool GoDefer bool // whether this call is part of a go or defer statement NoInline bool // whether this call must not be inlined // contains filtered or unexported fields }
func NewCallExpr
func NewCallExpr(pos src.XPos, op Op, fun Node, args []Node) *CallExpr
func (*CallExpr) Bounded
func (n *CallExpr) Bounded() bool
func (*CallExpr) Format
func (n *CallExpr) Format(s fmt.State, verb rune)
func (*CallExpr) Init
func (n *CallExpr) Init() Nodes
func (*CallExpr) MarkNonNil
func (n *CallExpr) MarkNonNil()
func (*CallExpr) NonNil
func (n *CallExpr) NonNil() bool
func (*CallExpr) PtrInit
func (n *CallExpr) PtrInit() *Nodes
func (*CallExpr) SetBounded
func (n *CallExpr) SetBounded(b bool)
func (*CallExpr) SetInit
func (n *CallExpr) SetInit(x Nodes)
func (*CallExpr) SetOp
func (n *CallExpr) SetOp(op Op)
func (*CallExpr) SetTransient
func (n *CallExpr) SetTransient(b bool)
func (*CallExpr) SetType
func (n *CallExpr) SetType(x *types.Type)
func (*CallExpr) Transient
func (n *CallExpr) Transient() bool
func (*CallExpr) Type
func (n *CallExpr) Type() *types.Type
type CaseClause
A CaseClause is a case statement in a switch or select: case List: Body.
type CaseClause struct { Var *Name // declared variable for this case in type switch List Nodes // list of expressions for switch, early select // RTypes is a list of RType expressions, which are copied to the // corresponding OEQ nodes that are emitted when switch statements // are desugared. RTypes[i] must be non-nil if the emitted // comparison for List[i] will be a mixed interface/concrete // comparison; see reflectdata.CompareRType for details. // // Because mixed interface/concrete switch cases are rare, we allow // len(RTypes) < len(List). Missing entries are implicitly nil. RTypes Nodes Body Nodes // contains filtered or unexported fields }
func NewCaseStmt
func NewCaseStmt(pos src.XPos, list, body []Node) *CaseClause
func (*CaseClause) Format
func (n *CaseClause) Format(s fmt.State, verb rune)
func (*CaseClause) Init
func (n *CaseClause) Init() Nodes
func (*CaseClause) PtrInit
func (n *CaseClause) PtrInit() *Nodes
func (*CaseClause) SetInit
func (n *CaseClause) SetInit(x Nodes)
type Class
The Class of a variable/function describes the "storage class" of a variable or function. During parsing, storage classes are called declaration contexts.
type Class uint8
const ( Pxxx Class = iota // no class; used during ssa conversion to indicate pseudo-variables PEXTERN // global variables PAUTO // local variables PAUTOHEAP // local variables or parameters moved to heap PPARAM // input arguments PPARAMOUT // output results PTYPEPARAM // type params PFUNC // global functions )
func (Class) String
func (i Class) String() string
type ClosureExpr
A ClosureExpr is a function literal expression.
type ClosureExpr struct { Func *Func `mknode:"-"` Prealloc *Name IsGoWrap bool // whether this is wrapper closure of a go statement // contains filtered or unexported fields }
func (*ClosureExpr) Bounded
func (n *ClosureExpr) Bounded() bool
func (*ClosureExpr) Format
func (n *ClosureExpr) Format(s fmt.State, verb rune)
func (*ClosureExpr) Init
func (n *ClosureExpr) Init() Nodes
func (*ClosureExpr) MarkNonNil
func (n *ClosureExpr) MarkNonNil()
func (*ClosureExpr) NonNil
func (n *ClosureExpr) NonNil() bool
func (*ClosureExpr) PtrInit
func (n *ClosureExpr) PtrInit() *Nodes
func (*ClosureExpr) SetBounded
func (n *ClosureExpr) SetBounded(b bool)
func (*ClosureExpr) SetInit
func (n *ClosureExpr) SetInit(x Nodes)
func (*ClosureExpr) SetTransient
func (n *ClosureExpr) SetTransient(b bool)
func (*ClosureExpr) SetType
func (n *ClosureExpr) SetType(x *types.Type)
func (*ClosureExpr) Transient
func (n *ClosureExpr) Transient() bool
func (*ClosureExpr) Type
func (n *ClosureExpr) Type() *types.Type
type CommClause
type CommClause struct { Comm Node // communication case Body Nodes // contains filtered or unexported fields }
func NewCommStmt
func NewCommStmt(pos src.XPos, comm Node, body []Node) *CommClause
func (*CommClause) Format
func (n *CommClause) Format(s fmt.State, verb rune)
func (*CommClause) Init
func (n *CommClause) Init() Nodes
func (*CommClause) PtrInit
func (n *CommClause) PtrInit() *Nodes
func (*CommClause) SetInit
func (n *CommClause) SetInit(x Nodes)
type CompLitExpr
A CompLitExpr is a composite literal Type{Vals}. Before type-checking, the type is Ntype.
type CompLitExpr struct { List Nodes // initialized values RType Node `mknode:"-"` // *runtime._type for OMAPLIT map types Prealloc *Name // For OSLICELIT, Len is the backing array length. // For OMAPLIT, Len is the number of entries that we've removed from List and // generated explicit mapassign calls for. This is used to inform the map alloc hint. Len int64 // contains filtered or unexported fields }
func NewCompLitExpr
func NewCompLitExpr(pos src.XPos, op Op, typ *types.Type, list []Node) *CompLitExpr
func (*CompLitExpr) Bounded
func (n *CompLitExpr) Bounded() bool
func (*CompLitExpr) Format
func (n *CompLitExpr) Format(s fmt.State, verb rune)
func (*CompLitExpr) Implicit
func (n *CompLitExpr) Implicit() bool
func (*CompLitExpr) Init
func (n *CompLitExpr) Init() Nodes
func (*CompLitExpr) MarkNonNil
func (n *CompLitExpr) MarkNonNil()
func (*CompLitExpr) NonNil
func (n *CompLitExpr) NonNil() bool
func (*CompLitExpr) PtrInit
func (n *CompLitExpr) PtrInit() *Nodes
func (*CompLitExpr) SetBounded
func (n *CompLitExpr) SetBounded(b bool)
func (*CompLitExpr) SetImplicit
func (n *CompLitExpr) SetImplicit(b bool)
func (*CompLitExpr) SetInit
func (n *CompLitExpr) SetInit(x Nodes)
func (*CompLitExpr) SetOp
func (n *CompLitExpr) SetOp(op Op)
func (*CompLitExpr) SetTransient
func (n *CompLitExpr) SetTransient(b bool)
func (*CompLitExpr) SetType
func (n *CompLitExpr) SetType(x *types.Type)
func (*CompLitExpr) Transient
func (n *CompLitExpr) Transient() bool
func (*CompLitExpr) Type
func (n *CompLitExpr) Type() *types.Type
type ConvExpr
A ConvExpr is a conversion Type(X). It may end up being a value or a type.
type ConvExpr struct { X Node // For implementing OCONVIFACE expressions. // // TypeWord is an expression yielding a *runtime._type or // *runtime.itab value to go in the type word of the iface/eface // result. See reflectdata.ConvIfaceTypeWord for further details. // // SrcRType is an expression yielding a *runtime._type value for X, // if it's not pointer-shaped and needs to be heap allocated. TypeWord Node `mknode:"-"` SrcRType Node `mknode:"-"` // For -d=checkptr instrumentation of conversions from // unsafe.Pointer to *Elem or *[Len]Elem. // // TODO(mdempsky): We only ever need one of these, but currently we // don't decide which one until walk. Longer term, it probably makes // sense to have a dedicated IR op for `(*[Len]Elem)(ptr)[:n:m]` // expressions. ElemRType Node `mknode:"-"` ElemElemRType Node `mknode:"-"` // contains filtered or unexported fields }
func NewConvExpr
func NewConvExpr(pos src.XPos, op Op, typ *types.Type, x Node) *ConvExpr
func (*ConvExpr) Bounded
func (n *ConvExpr) Bounded() bool
func (*ConvExpr) CheckPtr
func (n *ConvExpr) CheckPtr() bool
func (*ConvExpr) Format
func (n *ConvExpr) Format(s fmt.State, verb rune)
func (*ConvExpr) Implicit
func (n *ConvExpr) Implicit() bool
func (*ConvExpr) Init
func (n *ConvExpr) Init() Nodes
func (*ConvExpr) MarkNonNil
func (n *ConvExpr) MarkNonNil()
func (*ConvExpr) NonNil
func (n *ConvExpr) NonNil() bool
func (*ConvExpr) PtrInit
func (n *ConvExpr) PtrInit() *Nodes
func (*ConvExpr) SetBounded
func (n *ConvExpr) SetBounded(b bool)
func (*ConvExpr) SetCheckPtr
func (n *ConvExpr) SetCheckPtr(b bool)
func (*ConvExpr) SetImplicit
func (n *ConvExpr) SetImplicit(b bool)
func (*ConvExpr) SetInit
func (n *ConvExpr) SetInit(x Nodes)
func (*ConvExpr) SetOp
func (n *ConvExpr) SetOp(op Op)
func (*ConvExpr) SetTransient
func (n *ConvExpr) SetTransient(b bool)
func (*ConvExpr) SetType
func (n *ConvExpr) SetType(x *types.Type)
func (*ConvExpr) Transient
func (n *ConvExpr) Transient() bool
func (*ConvExpr) Type
func (n *ConvExpr) Type() *types.Type
type Decl
A Decl is a declaration of a const, type, or var. (A declared func is a Func.)
type Decl struct { X *Name // the thing being declared // contains filtered or unexported fields }
func NewDecl
func NewDecl(pos src.XPos, op Op, x *Name) *Decl
func (*Decl) Esc
func (n *Decl) Esc() uint16
func (*Decl) Format
func (n *Decl) Format(s fmt.State, verb rune)
func (*Decl) Init
func (n *Decl) Init() Nodes
func (*Decl) MarkNonNil
func (n *Decl) MarkNonNil()
func (*Decl) Name
func (n *Decl) Name() *Name
func (*Decl) NonNil
func (n *Decl) NonNil() bool
func (*Decl) Op
func (n *Decl) Op() Op
op can be read, but not written. An embedding implementation can provide a SetOp if desired. (The panicking SetOp is with the other panics below.)
func (*Decl) Pos
func (n *Decl) Pos() src.XPos
func (*Decl) SetEsc
func (n *Decl) SetEsc(x uint16)
func (*Decl) SetPos
func (n *Decl) SetPos(x src.XPos)
func (*Decl) SetType
func (n *Decl) SetType(*types.Type)
func (*Decl) SetTypecheck
func (n *Decl) SetTypecheck(x uint8)
func (*Decl) SetVal
func (n *Decl) SetVal(v constant.Value)
func (*Decl) SetWalked
func (n *Decl) SetWalked(x bool)
func (*Decl) Sym
func (n *Decl) Sym() *types.Sym
func (*Decl) Type
func (n *Decl) Type() *types.Type
func (*Decl) Typecheck
func (n *Decl) Typecheck() uint8
func (*Decl) Val
func (n *Decl) Val() constant.Value
func (*Decl) Walked
func (n *Decl) Walked() bool
type DynamicType
A DynamicType represents a type expression whose exact type must be computed dynamically.
type DynamicType struct { // RType is an expression that yields a *runtime._type value // representing the asserted type. // // BUG(mdempsky): If ITab is non-nil, RType may be nil. RType Node // ITab is an expression that yields a *runtime.itab value // representing the asserted type within the assertee expression's // original interface type. // // ITab is only used for assertions (including type switches) from // non-empty interface type to a concrete (i.e., non-interface) // type. For all other assertions, ITab is nil. ITab Node // contains filtered or unexported fields }
func NewDynamicType
func NewDynamicType(pos src.XPos, rtype Node) *DynamicType
func (*DynamicType) Bounded
func (n *DynamicType) Bounded() bool
func (*DynamicType) Format
func (n *DynamicType) Format(s fmt.State, verb rune)
func (*DynamicType) Init
func (n *DynamicType) Init() Nodes
func (*DynamicType) MarkNonNil
func (n *DynamicType) MarkNonNil()
func (*DynamicType) NonNil
func (n *DynamicType) NonNil() bool
func (*DynamicType) PtrInit
func (n *DynamicType) PtrInit() *Nodes
func (*DynamicType) SetBounded
func (n *DynamicType) SetBounded(b bool)
func (*DynamicType) SetInit
func (n *DynamicType) SetInit(x Nodes)
func (*DynamicType) SetTransient
func (n *DynamicType) SetTransient(b bool)
func (*DynamicType) SetType
func (n *DynamicType) SetType(x *types.Type)
func (*DynamicType) ToStatic
func (dt *DynamicType) ToStatic() Node
ToStatic returns static type of dt if it is actually static.
func (*DynamicType) Transient
func (n *DynamicType) Transient() bool
func (*DynamicType) Type
func (n *DynamicType) Type() *types.Type
type DynamicTypeAssertExpr
A DynamicTypeAssertExpr asserts that X is of dynamic type RType.
type DynamicTypeAssertExpr struct { X Node // SrcRType is an expression that yields a *runtime._type value // representing X's type. It's used in failed assertion panic // messages. SrcRType Node // RType is an expression that yields a *runtime._type value // representing the asserted type. // // BUG(mdempsky): If ITab is non-nil, RType may be nil. RType Node // ITab is an expression that yields a *runtime.itab value // representing the asserted type within the assertee expression's // original interface type. // // ITab is only used for assertions from non-empty interface type to // a concrete (i.e., non-interface) type. For all other assertions, // ITab is nil. ITab Node // contains filtered or unexported fields }
func NewDynamicTypeAssertExpr
func NewDynamicTypeAssertExpr(pos src.XPos, op Op, x, rtype Node) *DynamicTypeAssertExpr
func (*DynamicTypeAssertExpr) Bounded
func (n *DynamicTypeAssertExpr) Bounded() bool
func (*DynamicTypeAssertExpr) Format
func (n *DynamicTypeAssertExpr) Format(s fmt.State, verb rune)
func (*DynamicTypeAssertExpr) Init
func (n *DynamicTypeAssertExpr) Init() Nodes
func (*DynamicTypeAssertExpr) MarkNonNil
func (n *DynamicTypeAssertExpr) MarkNonNil()
func (*DynamicTypeAssertExpr) NonNil
func (n *DynamicTypeAssertExpr) NonNil() bool
func (*DynamicTypeAssertExpr) PtrInit
func (n *DynamicTypeAssertExpr) PtrInit() *Nodes
func (*DynamicTypeAssertExpr) SetBounded
func (n *DynamicTypeAssertExpr) SetBounded(b bool)
func (*DynamicTypeAssertExpr) SetInit
func (n *DynamicTypeAssertExpr) SetInit(x Nodes)
func (*DynamicTypeAssertExpr) SetOp
func (n *DynamicTypeAssertExpr) SetOp(op Op)
func (*DynamicTypeAssertExpr) SetTransient
func (n *DynamicTypeAssertExpr) SetTransient(b bool)
func (*DynamicTypeAssertExpr) SetType
func (n *DynamicTypeAssertExpr) SetType(x *types.Type)
func (*DynamicTypeAssertExpr) Transient
func (n *DynamicTypeAssertExpr) Transient() bool
func (*DynamicTypeAssertExpr) Type
func (n *DynamicTypeAssertExpr) Type() *types.Type
type Embed
type Embed struct { Pos src.XPos Patterns []string }
type Expr
An Expr is a Node that can appear as an expression.
type Expr interface {
Node
// contains filtered or unexported methods
}
type ForStmt
A ForStmt is a non-range for loop: for Init; Cond; Post { Body }
type ForStmt struct {
Label *types.Sym
Cond Node
Post Node
Body Nodes
DistinctVars bool
// contains filtered or unexported fields
}
func NewForStmt
func NewForStmt(pos src.XPos, init Node, cond, post Node, body []Node, distinctVars bool) *ForStmt
func (*ForStmt) Format
func (n *ForStmt) Format(s fmt.State, verb rune)
func (*ForStmt) Init
func (n *ForStmt) Init() Nodes
func (*ForStmt) PtrInit
func (n *ForStmt) PtrInit() *Nodes
func (*ForStmt) SetInit
func (n *ForStmt) SetInit(x Nodes)
type Func
A Func corresponds to a single function in a Go program (and vice versa: each function is denoted by exactly one *Func).
There are multiple nodes that represent a Func in the IR.
The ONAME node (Func.Nname) is used for plain references to it. The ODCLFUNC node (the Func itself) is used for its declaration code. The OCLOSURE node (Func.OClosure) is used for a reference to a function literal.
An imported function will have an ONAME node which points to a Func with an empty body. A declared function or method has an ODCLFUNC (the Func itself) and an ONAME. A function literal is represented directly by an OCLOSURE, but it also has an ODCLFUNC (and a matching ONAME) representing the compiled underlying form of the closure, which accesses the captured variables using a special data structure passed in a register.
A method declaration is represented like functions, except f.Sym will be the qualified method name (e.g., "T.m").
A method expression (T.M) is represented as an OMETHEXPR node, in which n.Left and n.Right point to the type and method, respectively. Each distinct mention of a method expression in the source code constructs a fresh node.
A method value (t.M) is represented by ODOTMETH/ODOTINTER when it is called directly and by OMETHVALUE otherwise. These are like method expressions, except that for ODOTMETH/ODOTINTER, the method name is stored in Sym instead of Right. Each OMETHVALUE ends up being implemented as a new function, a bit like a closure, with its own ODCLFUNC. The OMETHVALUE uses n.Func to record the linkage to the generated ODCLFUNC, but there is no pointer from the Func back to the OMETHVALUE.
type Func struct { Body Nodes Nname *Name // ONAME node OClosure *ClosureExpr // OCLOSURE node // ONAME nodes for all params/locals for this func/closure, does NOT // include closurevars until transforming closures during walk. // Names must be listed PPARAMs, PPARAMOUTs, then PAUTOs, // with PPARAMs and PPARAMOUTs in order corresponding to the function signature. // Anonymous and blank params are declared as ~pNN (for PPARAMs) and ~rNN (for PPARAMOUTs). Dcl []*Name // ClosureVars lists the free variables that are used within a // function literal, but formally declared in an enclosing // function. The variables in this slice are the closure function's // own copy of the variables, which are used within its function // body. They will also each have IsClosureVar set, and will have // Byval set if they're captured by value. ClosureVars []*Name // Enclosed functions that need to be compiled. // Populated during walk. Closures []*Func // Parent of a closure ClosureParent *Func // Parents records the parent scope of each scope within a // function. The root scope (0) has no parent, so the i'th // scope's parent is stored at Parents[i-1]. Parents []ScopeID // Marks records scope boundary changes. Marks []Mark FieldTrack map[*obj.LSym]struct{} DebugInfo interface{} LSym *obj.LSym // Linker object in this function's native ABI (Func.ABI) Inl *Inline // RangeParent, if non-nil, is the first non-range body function containing // the closure for the body of a range function. RangeParent *Func Label int32 // largest auto-generated label in this function Endlineno src.XPos WBPos src.XPos // position of first write barrier; see SetWBPos Pragma PragmaFlag // go:xxx function annotations // ABI is a function's "definition" ABI. This is the ABI that // this function's generated code is expecting to be called by. // // For most functions, this will be obj.ABIInternal. It may be // a different ABI for functions defined in assembly or ABI wrappers. // // This is included in the export data and tracked across packages. ABI obj.ABI // ABIRefs is the set of ABIs by which this function is referenced. // For ABIs other than this function's definition ABI, the // compiler generates ABI wrapper functions. This is only tracked // within a package. ABIRefs obj.ABISet NumDefers int32 // number of defer calls in the function NumReturns int32 // number of explicit returns in the function // NWBRCalls records the LSyms of functions called by this // function for go:nowritebarrierrec analysis. Only filled in // if nowritebarrierrecCheck != nil. NWBRCalls *[]SymAndPos // For wrapper functions, WrappedFunc point to the original Func. // Currently only used for go/defer wrappers. WrappedFunc *Func // WasmImport is used by the //go:wasmimport directive to store info about // a WebAssembly function import. WasmImport *WasmImport // WasmExport is used by the //go:wasmexport directive to store info about // a WebAssembly function import. WasmExport *WasmExport // contains filtered or unexported fields }
var CurFunc *Func
func IsIfaceOfFunc
func IsIfaceOfFunc(n Node) *Func
IsIfaceOfFunc inspects whether n is an interface conversion from a direct reference of a func. If so, it returns referenced Func; otherwise nil.
This is only usable before walk.walkConvertInterface, which converts to an OMAKEFACE.
func NewClosureFunc
func NewClosureFunc(fpos, cpos src.XPos, why Op, typ *types.Type, outerfn *Func, pkg *Package) *Func
NewClosureFunc creates a new Func to represent a function literal with the given type.
fpos the position used for the underlying ODCLFUNC and ONAME, whereas cpos is the position used for the OCLOSURE. They're separate because in the presence of inlining, the OCLOSURE node should have an inline-adjusted position, whereas the ODCLFUNC and ONAME must not.
outerfn is the enclosing function. The returned function is appending to pkg.Funcs.
why is the reason we're generating this Func. It can be OCLOSURE (for a normal function literal) or OGO or ODEFER (for wrapping a call expression that has parameters or results).
func NewFunc
func NewFunc(fpos, npos src.XPos, sym *types.Sym, typ *types.Type) *Func
NewFunc returns a new Func with the given name and type.
fpos is the position of the "func" token, and npos is the position of the name identifier.
TODO(mdempsky): I suspect there's no need for separate fpos and npos.
func (*Func) ABIWrapper
func (f *Func) ABIWrapper() bool
func (*Func) ClosureResultsLost
func (f *Func) ClosureResultsLost() bool
func (*Func) DeclareParams
func (fn *Func) DeclareParams(setNname bool)
DeclareParams creates Names for all of the parameters in fn's signature and adds them to fn.Dcl.
If setNname is true, then it also sets types.Field.Nname for each parameter.
func (*Func) Dupok
func (f *Func) Dupok() bool
func (*Func) Esc
func (n *Func) Esc() uint16
func (*Func) Format
func (n *Func) Format(s fmt.State, verb rune)
func (*Func) HasDefer
func (f *Func) HasDefer() bool
func (*Func) Init
func (n *Func) Init() Nodes
func (*Func) InlinabilityChecked
func (f *Func) InlinabilityChecked() bool
func (*Func) IsClosure
func (f *Func) IsClosure() bool
IsClosure reports whether f is a function literal that captures at least one value.
func (*Func) IsPackageInit
func (f *Func) IsPackageInit() bool
func (*Func) Linksym
func (f *Func) Linksym() *obj.LSym
func (*Func) LinksymABI
func (f *Func) LinksymABI(abi obj.ABI) *obj.LSym
func (*Func) MarkNonNil
func (n *Func) MarkNonNil()
func (*Func) Name
func (n *Func) Name() *Name
func (*Func) Needctxt
func (f *Func) Needctxt() bool
func (*Func) NeverReturns
func (f *Func) NeverReturns() bool
func (*Func) NewLocal
func (fn *Func) NewLocal(pos src.XPos, sym *types.Sym, typ *types.Type) *Name
NewLocal returns a new function-local variable with the given name and type.
func (*Func) NilCheckDisabled
func (f *Func) NilCheckDisabled() bool
func (*Func) NonNil
func (n *Func) NonNil() bool
func (*Func) Op
func (n *Func) Op() Op
op can be read, but not written. An embedding implementation can provide a SetOp if desired. (The panicking SetOp is with the other panics below.)
func (*Func) OpenCodedDeferDisallowed
func (f *Func) OpenCodedDeferDisallowed() bool
func (*Func) Pos
func (n *Func) Pos() src.XPos
func (*Func) SetABIWrapper
func (f *Func) SetABIWrapper(b bool)
func (*Func) SetClosureResultsLost
func (f *Func) SetClosureResultsLost(b bool)
func (*Func) SetDupok
func (f *Func) SetDupok(b bool)
func (*Func) SetEsc
func (n *Func) SetEsc(x uint16)
func (*Func) SetHasDefer
func (f *Func) SetHasDefer(b bool)
func (*Func) SetInlinabilityChecked
func (f *Func) SetInlinabilityChecked(b bool)
func (*Func) SetIsPackageInit
func (f *Func) SetIsPackageInit(b bool)
func (*Func) SetNeedctxt
func (f *Func) SetNeedctxt(b bool)
func (*Func) SetNeverReturns
func (f *Func) SetNeverReturns(b bool)
func (*Func) SetNilCheckDisabled
func (f *Func) SetNilCheckDisabled(b bool)
func (*Func) SetOpenCodedDeferDisallowed
func (f *Func) SetOpenCodedDeferDisallowed(b bool)
func (*Func) SetPos
func (n *Func) SetPos(x src.XPos)
func (*Func) SetType
func (n *Func) SetType(*types.Type)
func (*Func) SetTypecheck
func (n *Func) SetTypecheck(x uint8)
func (*Func) SetVal
func (n *Func) SetVal(v constant.Value)
func (*Func) SetWBPos
func (f *Func) SetWBPos(pos src.XPos)
func (*Func) SetWalked
func (n *Func) SetWalked(x bool)
func (*Func) SetWrapper
func (f *Func) SetWrapper(b bool)
func (*Func) Sym
func (f *Func) Sym() *types.Sym
func (*Func) Type
func (f *Func) Type() *types.Type
func (*Func) Typecheck
func (n *Func) Typecheck() uint8
func (*Func) Val
func (n *Func) Val() constant.Value
func (*Func) Walked
func (n *Func) Walked() bool
func (*Func) Wrapper
func (f *Func) Wrapper() bool
type GoDeferStmt
A GoDeferStmt is a go or defer statement: go Call / defer Call.
The two opcodes use a single syntax because the implementations are very similar: both are concerned with saving Call and running it in a different context (a separate goroutine or a later time).
type GoDeferStmt struct {
Call Node
DeferAt Expr
// contains filtered or unexported fields
}
func NewGoDeferStmt
func NewGoDeferStmt(pos src.XPos, op Op, call Node) *GoDeferStmt
func (*GoDeferStmt) Format
func (n *GoDeferStmt) Format(s fmt.State, verb rune)
func (*GoDeferStmt) Init
func (n *GoDeferStmt) Init() Nodes
func (*GoDeferStmt) PtrInit
func (n *GoDeferStmt) PtrInit() *Nodes
func (*GoDeferStmt) SetInit
func (n *GoDeferStmt) SetInit(x Nodes)
type Ident
An Ident is an identifier, possibly qualified.
type Ident struct {
// contains filtered or unexported fields
}
func NewIdent
func NewIdent(pos src.XPos, sym *types.Sym) *Ident
func (*Ident) Bounded
func (n *Ident) Bounded() bool
func (*Ident) Format
func (n *Ident) Format(s fmt.State, verb rune)
func (*Ident) Init
func (n *Ident) Init() Nodes
func (*Ident) MarkNonNil
func (n *Ident) MarkNonNil()
func (*Ident) NonNil
func (n *Ident) NonNil() bool
func (*Ident) PtrInit
func (n *Ident) PtrInit() *Nodes
func (*Ident) SetBounded
func (n *Ident) SetBounded(b bool)
func (*Ident) SetInit
func (n *Ident) SetInit(x Nodes)
func (*Ident) SetTransient
func (n *Ident) SetTransient(b bool)
func (*Ident) SetType
func (n *Ident) SetType(x *types.Type)
func (*Ident) Sym
func (n *Ident) Sym() *types.Sym
func (*Ident) Transient
func (n *Ident) Transient() bool
func (*Ident) Type
func (n *Ident) Type() *types.Type
type IfStmt
An IfStmt is a return statement: if Init; Cond { Body } else { Else }.
type IfStmt struct { Cond Node Body Nodes Else Nodes Likely bool // code layout hint // contains filtered or unexported fields }
func NewIfStmt
func NewIfStmt(pos src.XPos, cond Node, body, els []Node) *IfStmt
func (*IfStmt) Format
func (n *IfStmt) Format(s fmt.State, verb rune)
func (*IfStmt) Init
func (n *IfStmt) Init() Nodes
func (*IfStmt) PtrInit
func (n *IfStmt) PtrInit() *Nodes
func (*IfStmt) SetInit
func (n *IfStmt) SetInit(x Nodes)
type IndexExpr
An IndexExpr is an index expression X[Index].
type IndexExpr struct { X Node Index Node RType Node `mknode:"-"` // see reflectdata/helpers.go Assigned bool // contains filtered or unexported fields }
func NewIndexExpr
func NewIndexExpr(pos src.XPos, x, index Node) *IndexExpr
func (*IndexExpr) Bounded
func (n *IndexExpr) Bounded() bool
func (*IndexExpr) Format
func (n *IndexExpr) Format(s fmt.State, verb rune)
func (*IndexExpr) Init
func (n *IndexExpr) Init() Nodes
func (*IndexExpr) MarkNonNil
func (n *IndexExpr) MarkNonNil()
func (*IndexExpr) NonNil
func (n *IndexExpr) NonNil() bool
func (*IndexExpr) PtrInit
func (n *IndexExpr) PtrInit() *Nodes
func (*IndexExpr) SetBounded
func (n *IndexExpr) SetBounded(b bool)
func (*IndexExpr) SetInit
func (n *IndexExpr) SetInit(x Nodes)
func (*IndexExpr) SetOp
func (n *IndexExpr) SetOp(op Op)
func (*IndexExpr) SetTransient
func (n *IndexExpr) SetTransient(b bool)
func (*IndexExpr) SetType
func (n *IndexExpr) SetType(x *types.Type)
func (*IndexExpr) Transient
func (n *IndexExpr) Transient() bool
func (*IndexExpr) Type
func (n *IndexExpr) Type() *types.Type
type InitNode
type InitNode interface { Node PtrInit() *Nodes SetInit(x Nodes) }
type Inline
An Inline holds fields used for function bodies that can be inlined.
type Inline struct { Cost int32 // heuristic cost of inlining this function // Copy of Func.Dcl for use during inlining. This copy is needed // because the function's Dcl may change from later compiler // transformations. This field is also populated when a function // from another package is imported and inlined. Dcl []*Name HaveDcl bool // whether we've loaded Dcl // Function properties, encoded as a string (these are used for // making inlining decisions). See cmd/compile/internal/inline/inlheur. Properties string // CanDelayResults reports whether it's safe for the inliner to delay // initializing the result parameters until immediately before the // "return" statement. CanDelayResults bool }
type InlineMarkStmt
An InlineMarkStmt is a marker placed just before an inlined body.
type InlineMarkStmt struct {
Index int64
// contains filtered or unexported fields
}
func NewInlineMarkStmt
func NewInlineMarkStmt(pos src.XPos, index int64) *InlineMarkStmt
func (*InlineMarkStmt) Format
func (n *InlineMarkStmt) Format(s fmt.State, verb rune)
func (*InlineMarkStmt) Init
func (n *InlineMarkStmt) Init() Nodes
func (*InlineMarkStmt) Offset
func (n *InlineMarkStmt) Offset() int64
func (*InlineMarkStmt) PtrInit
func (n *InlineMarkStmt) PtrInit() *Nodes
func (*InlineMarkStmt) SetInit
func (n *InlineMarkStmt) SetInit(x Nodes)
func (*InlineMarkStmt) SetOffset
func (n *InlineMarkStmt) SetOffset(x int64)
type InlinedCallExpr
An InlinedCallExpr is an inlined function call.
type InlinedCallExpr struct { Body Nodes ReturnVars Nodes // must be side-effect free // contains filtered or unexported fields }
func NewInlinedCallExpr
func NewInlinedCallExpr(pos src.XPos, body, retvars []Node) *InlinedCallExpr
func (*InlinedCallExpr) Bounded
func (n *InlinedCallExpr) Bounded() bool
func (*InlinedCallExpr) Format
func (n *InlinedCallExpr) Format(s fmt.State, verb rune)
func (*InlinedCallExpr) Init
func (n *InlinedCallExpr) Init() Nodes
func (*InlinedCallExpr) MarkNonNil
func (n *InlinedCallExpr) MarkNonNil()
func (*InlinedCallExpr) NonNil
func (n *InlinedCallExpr) NonNil() bool
func (*InlinedCallExpr) PtrInit
func (n *InlinedCallExpr) PtrInit() *Nodes
func (*InlinedCallExpr) SetBounded
func (n *InlinedCallExpr) SetBounded(b bool)
func (*InlinedCallExpr) SetInit
func (n *InlinedCallExpr) SetInit(x Nodes)
func (*InlinedCallExpr) SetTransient
func (n *InlinedCallExpr) SetTransient(b bool)
func (*InlinedCallExpr) SetType
func (n *InlinedCallExpr) SetType(x *types.Type)
func (*InlinedCallExpr) SingleResult
func (n *InlinedCallExpr) SingleResult() Node
func (*InlinedCallExpr) Transient
func (n *InlinedCallExpr) Transient() bool
func (*InlinedCallExpr) Type
func (n *InlinedCallExpr) Type() *types.Type
type InterfaceSwitchStmt
An InterfaceSwitchStmt is used to implement type switches. Its semantics are:
if RuntimeType implements Descriptor.Cases[0] { Case, Itab = 0, itab<RuntimeType, Descriptor.Cases[0]> } else if RuntimeType implements Descriptor.Cases[1] { Case, Itab = 1, itab<RuntimeType, Descriptor.Cases[1]> ... } else if RuntimeType implements Descriptor.Cases[N-1] { Case, Itab = N-1, itab<RuntimeType, Descriptor.Cases[N-1]> } else { Case, Itab = len(cases), nil }
RuntimeType must be a non-nil *runtime._type. Hash must be the hash field of RuntimeType (or its copy loaded from an itab). Descriptor must represent an abi.InterfaceSwitch global variable.
type InterfaceSwitchStmt struct {
Case Node
Itab Node
RuntimeType Node
Hash Node
Descriptor *obj.LSym
// contains filtered or unexported fields
}
func NewInterfaceSwitchStmt
func NewInterfaceSwitchStmt(pos src.XPos, case_, itab, runtimeType, hash Node, descriptor *obj.LSym) *InterfaceSwitchStmt
func (*InterfaceSwitchStmt) Format
func (n *InterfaceSwitchStmt) Format(s fmt.State, verb rune)
func (*InterfaceSwitchStmt) Init
func (n *InterfaceSwitchStmt) Init() Nodes
func (*InterfaceSwitchStmt) PtrInit
func (n *InterfaceSwitchStmt) PtrInit() *Nodes
func (*InterfaceSwitchStmt) SetInit
func (n *InterfaceSwitchStmt) SetInit(x Nodes)
type JumpTableStmt
A JumpTableStmt is used to implement switches. Its semantics are:
tmp := jt.Idx if tmp == Cases[0] goto Targets[0] if tmp == Cases[1] goto Targets[1] ... if tmp == Cases[n] goto Targets[n]
Note that a JumpTableStmt is more like a multiway-goto than a multiway-if. In particular, the case bodies are just labels to jump to, not full Nodes lists.
type JumpTableStmt struct { // Value used to index the jump table. // We support only integer types that // are at most the size of a uintptr. Idx Node // If Idx is equal to Cases[i], jump to Targets[i]. // Cases entries must be distinct and in increasing order. // The length of Cases and Targets must be equal. Cases []constant.Value Targets []*types.Sym // contains filtered or unexported fields }
func NewJumpTableStmt
func NewJumpTableStmt(pos src.XPos, idx Node) *JumpTableStmt
func (*JumpTableStmt) Format
func (n *JumpTableStmt) Format(s fmt.State, verb rune)
func (*JumpTableStmt) Init
func (n *JumpTableStmt) Init() Nodes
func (*JumpTableStmt) PtrInit
func (n *JumpTableStmt) PtrInit() *Nodes
func (*JumpTableStmt) SetInit
func (n *JumpTableStmt) SetInit(x Nodes)
type KeyExpr
A KeyExpr is a Key: Value composite literal key.
type KeyExpr struct {
Key Node
Value Node
// contains filtered or unexported fields
}
func NewKeyExpr
func NewKeyExpr(pos src.XPos, key, value Node) *KeyExpr
func (*KeyExpr) Bounded
func (n *KeyExpr) Bounded() bool
func (*KeyExpr) Format
func (n *KeyExpr) Format(s fmt.State, verb rune)
func (*KeyExpr) Init
func (n *KeyExpr) Init() Nodes
func (*KeyExpr) MarkNonNil
func (n *KeyExpr) MarkNonNil()
func (*KeyExpr) NonNil
func (n *KeyExpr) NonNil() bool
func (*KeyExpr) PtrInit
func (n *KeyExpr) PtrInit() *Nodes
func (*KeyExpr) SetBounded
func (n *KeyExpr) SetBounded(b bool)
func (*KeyExpr) SetInit
func (n *KeyExpr) SetInit(x Nodes)
func (*KeyExpr) SetTransient
func (n *KeyExpr) SetTransient(b bool)
func (*KeyExpr) SetType
func (n *KeyExpr) SetType(x *types.Type)
func (*KeyExpr) Transient
func (n *KeyExpr) Transient() bool
func (*KeyExpr) Type
func (n *KeyExpr) Type() *types.Type
type LabelStmt
A LabelStmt is a label statement (just the label, not including the statement it labels).
type LabelStmt struct { Label *types.Sym // "Label:" // contains filtered or unexported fields }
func NewLabelStmt
func NewLabelStmt(pos src.XPos, label *types.Sym) *LabelStmt
func (*LabelStmt) Format
func (n *LabelStmt) Format(s fmt.State, verb rune)
func (*LabelStmt) Init
func (n *LabelStmt) Init() Nodes
func (*LabelStmt) PtrInit
func (n *LabelStmt) PtrInit() *Nodes
func (*LabelStmt) SetInit
func (n *LabelStmt) SetInit(x Nodes)
func (*LabelStmt) Sym
func (n *LabelStmt) Sym() *types.Sym
type LinksymOffsetExpr
A LinksymOffsetExpr refers to an offset within a global variable. It is like a SelectorExpr but without the field name.
type LinksymOffsetExpr struct {
Linksym *obj.LSym
Offset_ int64
// contains filtered or unexported fields
}
func NewLinksymExpr
func NewLinksymExpr(pos src.XPos, lsym *obj.LSym, typ *types.Type) *LinksymOffsetExpr
NewLinksymExpr is NewLinksymOffsetExpr, but with offset fixed at 0.
func NewLinksymOffsetExpr
func NewLinksymOffsetExpr(pos src.XPos, lsym *obj.LSym, offset int64, typ *types.Type) *LinksymOffsetExpr
func NewNameOffsetExpr
func NewNameOffsetExpr(pos src.XPos, name *Name, offset int64, typ *types.Type) *LinksymOffsetExpr
NewNameOffsetExpr is NewLinksymOffsetExpr, but taking a *Name representing a global variable instead of an *obj.LSym directly.
func (*LinksymOffsetExpr) Bounded
func (n *LinksymOffsetExpr) Bounded() bool
func (*LinksymOffsetExpr) Format
func (n *LinksymOffsetExpr) Format(s fmt.State, verb rune)
func (*LinksymOffsetExpr) Init
func (n *LinksymOffsetExpr) Init() Nodes
func (*LinksymOffsetExpr) MarkNonNil
func (n *LinksymOffsetExpr) MarkNonNil()
func (*LinksymOffsetExpr) NonNil
func (n *LinksymOffsetExpr) NonNil() bool
func (*LinksymOffsetExpr) PtrInit
func (n *LinksymOffsetExpr) PtrInit() *Nodes
func (*LinksymOffsetExpr) SetBounded
func (n *LinksymOffsetExpr) SetBounded(b bool)
func (*LinksymOffsetExpr) SetInit
func (n *LinksymOffsetExpr) SetInit(x Nodes)
func (*LinksymOffsetExpr) SetTransient
func (n *LinksymOffsetExpr) SetTransient(b bool)
func (*LinksymOffsetExpr) SetType
func (n *LinksymOffsetExpr) SetType(x *types.Type)
func (*LinksymOffsetExpr) Transient
func (n *LinksymOffsetExpr) Transient() bool
func (*LinksymOffsetExpr) Type
func (n *LinksymOffsetExpr) Type() *types.Type
type LogicalExpr
A LogicalExpr is an expression X Op Y where Op is && or ||. It is separate from BinaryExpr to make room for statements that must be executed before Y but after X.
type LogicalExpr struct {
X Node
Y Node
// contains filtered or unexported fields
}
func NewLogicalExpr
func NewLogicalExpr(pos src.XPos, op Op, x, y Node) *LogicalExpr
func (*LogicalExpr) Bounded
func (n *LogicalExpr) Bounded() bool
func (*LogicalExpr) Format
func (n *LogicalExpr) Format(s fmt.State, verb rune)
func (*LogicalExpr) Init
func (n *LogicalExpr) Init() Nodes
func (*LogicalExpr) MarkNonNil
func (n *LogicalExpr) MarkNonNil()
func (*LogicalExpr) NonNil
func (n *LogicalExpr) NonNil() bool
func (*LogicalExpr) PtrInit
func (n *LogicalExpr) PtrInit() *Nodes
func (*LogicalExpr) SetBounded
func (n *LogicalExpr) SetBounded(b bool)
func (*LogicalExpr) SetInit
func (n *LogicalExpr) SetInit(x Nodes)
func (*LogicalExpr) SetOp
func (n *LogicalExpr) SetOp(op Op)
func (*LogicalExpr) SetTransient
func (n *LogicalExpr) SetTransient(b bool)
func (*LogicalExpr) SetType
func (n *LogicalExpr) SetType(x *types.Type)
func (*LogicalExpr) Transient
func (n *LogicalExpr) Transient() bool
func (*LogicalExpr) Type
func (n *LogicalExpr) Type() *types.Type
type MakeExpr
A MakeExpr is a make expression: make(Type[, Len[, Cap]]). Op is OMAKECHAN, OMAKEMAP, OMAKESLICE, or OMAKESLICECOPY, but *not* OMAKE (that's a pre-typechecking CallExpr).
type MakeExpr struct { RType Node `mknode:"-"` // see reflectdata/helpers.go Len Node Cap Node // contains filtered or unexported fields }
func NewMakeExpr
func NewMakeExpr(pos src.XPos, op Op, len, cap Node) *MakeExpr
func (*MakeExpr) Bounded
func (n *MakeExpr) Bounded() bool
func (*MakeExpr) Format
func (n *MakeExpr) Format(s fmt.State, verb rune)
func (*MakeExpr) Init
func (n *MakeExpr) Init() Nodes
func (*MakeExpr) MarkNonNil
func (n *MakeExpr) MarkNonNil()
func (*MakeExpr) NonNil
func (n *MakeExpr) NonNil() bool
func (*MakeExpr) PtrInit
func (n *MakeExpr) PtrInit() *Nodes
func (*MakeExpr) SetBounded
func (n *MakeExpr) SetBounded(b bool)
func (*MakeExpr) SetInit
func (n *MakeExpr) SetInit(x Nodes)
func (*MakeExpr) SetOp
func (n *MakeExpr) SetOp(op Op)
func (*MakeExpr) SetTransient
func (n *MakeExpr) SetTransient(b bool)
func (*MakeExpr) SetType
func (n *MakeExpr) SetType(x *types.Type)
func (*MakeExpr) Transient
func (n *MakeExpr) Transient() bool
func (*MakeExpr) Type
func (n *MakeExpr) Type() *types.Type
type Mark
A Mark represents a scope boundary.
type Mark struct { // Pos is the position of the token that marks the scope // change. Pos src.XPos // Scope identifies the innermost scope to the right of Pos. Scope ScopeID }
type Name
Name holds Node fields used only by named nodes (ONAME, OTYPE, some OLITERAL).
type Name struct { BuiltinOp Op // uint8 Class Class // uint8 DictIndex uint16 // index of the dictionary entry describing the type of this variable declaration plus 1 Func *Func // TODO(austin): nil for I.M Offset_ int64 Opt interface{} // for use by escape analysis Embed *[]Embed // list of embedded files, for ONAME var // For a local variable (not param) or extern, the initializing assignment (OAS or OAS2). // For a closure var, the ONAME node of the original (outermost) captured variable. // For the case-local variables of a type switch, the type switch guard (OTYPESW). // For a range variable, the range statement (ORANGE) // For a recv variable in a case of a select statement, the receive assignment (OSELRECV2) // For the name of a function, points to corresponding Func node. Defn Node // The function, method, or closure in which local variable or param is declared. Curfn *Func Heapaddr *Name // temp holding heap address of param // Outer points to the immediately enclosing function's copy of this // closure variable. If not a closure variable, then Outer is nil. Outer *Name // contains filtered or unexported fields }
var BlankNode *Name
func MethodExprName
func MethodExprName(n Node) *Name
MethodExprName returns the ONAME representing the method referenced by expression n, which must be a method selector, method expression, or method value.
func NewBuiltin
func NewBuiltin(sym *types.Sym, op Op) *Name
NewBuiltin returns a new Name representing a builtin function, either predeclared or from package unsafe.
func NewClosureVar
func NewClosureVar(pos src.XPos, fn *Func, n *Name) *Name
NewClosureVar returns a new closure variable for fn to refer to outer variable n.
func NewConstAt
func NewConstAt(pos src.XPos, sym *types.Sym, typ *types.Type, val constant.Value) *Name
NewConstAt returns a new OLITERAL Node associated with symbol s at position pos.
func NewDeclNameAt
func NewDeclNameAt(pos src.XPos, op Op, sym *types.Sym) *Name
NewDeclNameAt returns a new Name associated with symbol s at position pos. The caller is responsible for setting Curfn.
func NewHiddenParam
func NewHiddenParam(pos src.XPos, fn *Func, sym *types.Sym, typ *types.Type) *Name
NewHiddenParam returns a new hidden parameter for fn with the given name and type.
func NewNameAt
func NewNameAt(pos src.XPos, sym *types.Sym, typ *types.Type) *Name
NewNameAt returns a new ONAME Node associated with symbol s at position pos. The caller is responsible for setting Curfn.
func StaticCalleeName
func StaticCalleeName(n Node) *Name
StaticCalleeName returns the ONAME/PFUNC for n, if known.
func (*Name) Addrtaken
func (n *Name) Addrtaken() bool
func (*Name) Alias
func (n *Name) Alias() bool
Alias reports whether p, which must be for an OTYPE, is a type alias.
func (*Name) AutoTemp
func (n *Name) AutoTemp() bool
func (*Name) Bounded
func (n *Name) Bounded() bool
func (*Name) Byval
func (n *Name) Byval() bool
func (*Name) CanBeAnSSAAux
func (*Name) CanBeAnSSAAux()
func (*Name) CanBeAnSSASym
func (*Name) CanBeAnSSASym()
func (*Name) CanBeNtype
func (*Name) CanBeNtype()
func (*Name) Canonical
func (n *Name) Canonical() *Name
Canonical returns the logical declaration that n represents. If n is a closure variable, then Canonical returns the original Name as it appears in the function that immediately contains the declaration. Otherwise, Canonical simply returns n itself.
func (*Name) CoverageAuxVar
func (n *Name) CoverageAuxVar() bool
func (*Name) Format
func (n *Name) Format(s fmt.State, verb rune)
func (*Name) FrameOffset
func (n *Name) FrameOffset() int64
func (*Name) Init
func (n *Name) Init() Nodes
func (*Name) InlFormal
func (n *Name) InlFormal() bool
func (*Name) InlLocal
func (n *Name) InlLocal() bool
func (*Name) IsClosureVar
func (n *Name) IsClosureVar() bool
func (*Name) IsOutputParamHeapAddr
func (n *Name) IsOutputParamHeapAddr() bool
func (*Name) IsOutputParamInRegisters
func (n *Name) IsOutputParamInRegisters() bool
func (*Name) Libfuzzer8BitCounter
func (n *Name) Libfuzzer8BitCounter() bool
func (*Name) Linksym
func (n *Name) Linksym() *obj.LSym
func (*Name) LinksymABI
func (n *Name) LinksymABI(abi obj.ABI) *obj.LSym
func (*Name) MarkNonNil
func (n *Name) MarkNonNil()
func (*Name) MarkReadonly
func (n *Name) MarkReadonly()
MarkReadonly indicates that n is an ONAME with readonly contents.
func (*Name) Name
func (n *Name) Name() *Name
func (*Name) Needzero
func (n *Name) Needzero() bool
func (*Name) NonMergeable
func (n *Name) NonMergeable() bool
func (*Name) NonNil
func (n *Name) NonNil() bool
func (*Name) OnStack
func (n *Name) OnStack() bool
OnStack reports whether variable n may reside on the stack.
func (*Name) OpenDeferSlot
func (n *Name) OpenDeferSlot() bool
func (*Name) Pragma
func (n *Name) Pragma() PragmaFlag
Pragma returns the PragmaFlag for p, which must be for an OTYPE.
func (*Name) PtrInit
func (n *Name) PtrInit() *Nodes
func (*Name) Readonly
func (n *Name) Readonly() bool
func (*Name) RecordFrameOffset
func (n *Name) RecordFrameOffset(offset int64)
RecordFrameOffset records the frame offset for the name. It is used by package types when laying out function arguments.
func (*Name) SetAddrtaken
func (n *Name) SetAddrtaken(b bool)
func (*Name) SetAlias
func (n *Name) SetAlias(alias bool)
SetAlias sets whether p, which must be for an OTYPE, is a type alias.
func (*Name) SetAutoTemp
func (n *Name) SetAutoTemp(b bool)
func (*Name) SetBounded
func (n *Name) SetBounded(b bool)
func (*Name) SetByval
func (n *Name) SetByval(b bool)
func (*Name) SetCoverageAuxVar
func (n *Name) SetCoverageAuxVar(b bool)
func (*Name) SetFrameOffset
func (n *Name) SetFrameOffset(x int64)
func (*Name) SetFunc
func (n *Name) SetFunc(x *Func)
func (*Name) SetInit
func (n *Name) SetInit(x Nodes)
func (*Name) SetInlFormal
func (n *Name) SetInlFormal(b bool)
func (*Name) SetInlLocal
func (n *Name) SetInlLocal(b bool)
func (*Name) SetIsClosureVar
func (n *Name) SetIsClosureVar(b bool)
func (*Name) SetIsOutputParamHeapAddr
func (n *Name) SetIsOutputParamHeapAddr(b bool)
func (*Name) SetIsOutputParamInRegisters
func (n *Name) SetIsOutputParamInRegisters(b bool)
func (*Name) SetLibfuzzer8BitCounter
func (n *Name) SetLibfuzzer8BitCounter(b bool)
func (*Name) SetNeedzero
func (n *Name) SetNeedzero(b bool)
func (*Name) SetNonMergeable
func (n *Name) SetNonMergeable(b bool)
func (*Name) SetOpenDeferSlot
func (n *Name) SetOpenDeferSlot(b bool)
func (*Name) SetPragma
func (n *Name) SetPragma(flag PragmaFlag)
SetPragma sets the PragmaFlag for p, which must be for an OTYPE.
func (*Name) SetSubOp
func (n *Name) SetSubOp(x Op)
func (*Name) SetSym
func (n *Name) SetSym(x *types.Sym)
func (*Name) SetTransient
func (n *Name) SetTransient(b bool)
func (*Name) SetType
func (n *Name) SetType(x *types.Type)
func (*Name) SetUsed
func (n *Name) SetUsed(b bool)
func (*Name) SetVal
func (n *Name) SetVal(v constant.Value)
SetVal sets the constant.Value for the node.
func (*Name) SubOp
func (n *Name) SubOp() Op
func (*Name) Sym
func (n *Name) Sym() *types.Sym
func (*Name) Transient
func (n *Name) Transient() bool
func (*Name) Type
func (n *Name) Type() *types.Type
func (*Name) Used
func (n *Name) Used() bool
func (*Name) Val
func (n *Name) Val() constant.Value
Val returns the constant.Value for the node.
type NameQueue
NameQueue is a FIFO queue of *Name. The zero value of NameQueue is a ready-to-use empty queue.
type NameQueue struct {
// contains filtered or unexported fields
}
func (*NameQueue) Empty
func (q *NameQueue) Empty() bool
Empty reports whether q contains no Names.
func (*NameQueue) PopLeft
func (q *NameQueue) PopLeft() *Name
PopLeft pops a Name from the left of the queue. It panics if q is empty.
func (*NameQueue) PushRight
func (q *NameQueue) PushRight(n *Name)
PushRight appends n to the right of the queue.
type NameSet
NameSet is a set of Names.
type NameSet map[*Name]struct{}
func (*NameSet) Add
func (s *NameSet) Add(n *Name)
Add adds n to s.
func (NameSet) Has
func (s NameSet) Has(n *Name) bool
Has reports whether s contains n.
type NilExpr
A NilExpr represents the predefined untyped constant nil.
type NilExpr struct {
// contains filtered or unexported fields
}
func NewNilExpr
func NewNilExpr(pos src.XPos, typ *types.Type) *NilExpr
func (*NilExpr) Bounded
func (n *NilExpr) Bounded() bool
func (*NilExpr) Format
func (n *NilExpr) Format(s fmt.State, verb rune)
func (*NilExpr) Init
func (n *NilExpr) Init() Nodes
func (*NilExpr) MarkNonNil
func (n *NilExpr) MarkNonNil()
func (*NilExpr) NonNil
func (n *NilExpr) NonNil() bool
func (*NilExpr) PtrInit
func (n *NilExpr) PtrInit() *Nodes
func (*NilExpr) SetBounded
func (n *NilExpr) SetBounded(b bool)
func (*NilExpr) SetInit
func (n *NilExpr) SetInit(x Nodes)
func (*NilExpr) SetTransient
func (n *NilExpr) SetTransient(b bool)
func (*NilExpr) SetType
func (n *NilExpr) SetType(x *types.Type)
func (*NilExpr) Transient
func (n *NilExpr) Transient() bool
func (*NilExpr) Type
func (n *NilExpr) Type() *types.Type
type Node
A Node is the abstract interface to an IR node.
type Node interface { // Formatting Format(s fmt.State, verb rune) // Source position. Pos() src.XPos SetPos(x src.XPos) // Abstract graph structure, for generic traversals. Op() Op Init() Nodes // Fields specific to certain Ops only. Type() *types.Type SetType(t *types.Type) Name() *Name Sym() *types.Sym Val() constant.Value SetVal(v constant.Value) // Storage for analysis passes. Esc() uint16 SetEsc(x uint16) // Typecheck values: // 0 means the node is not typechecked // 1 means the node is completely typechecked // 2 means typechecking of the node is in progress Typecheck() uint8 SetTypecheck(x uint8) NonNil() bool MarkNonNil() // contains filtered or unexported methods }
func Copy
func Copy(n Node) Node
Copy returns a shallow copy of n.
func DeepCopy
func DeepCopy(pos src.XPos, n Node) Node
DeepCopy returns a “deep” copy of n, with its entire structure copied (except for shared nodes like ONAME, ONONAME, OLITERAL, and OTYPE). If pos.IsKnown(), it sets the source position of newly allocated Nodes to pos.
func DeepCopyList
func DeepCopyList(pos src.XPos, list []Node) []Node
DeepCopyList returns a list of deep copies (using DeepCopy) of the nodes in list.
func FuncPC
func FuncPC(pos src.XPos, n Node, wantABI obj.ABI) Node
FuncPC returns a uintptr-typed expression that evaluates to the PC of a function as uintptr, as returned by internal/abi.FuncPC{ABI0,ABIInternal}.
n should be a Node of an interface type, as is passed to internal/abi.FuncPC{ABI0,ABIInternal}.
TODO(prattmic): Since n is simply an interface{} there is no assertion that it is actually a function at all. Perhaps we should emit a runtime type assertion?
func InitExpr
func InitExpr(init []Node, expr Node) Node
The result of InitExpr MUST be assigned back to n, e.g.
n.X = InitExpr(init, n.X)
func NewBasicLit
func NewBasicLit(pos src.XPos, typ *types.Type, val constant.Value) Node
NewBasicLit returns an OLITERAL representing val with the given type.
func NewBool
func NewBool(pos src.XPos, b bool) Node
NewBool returns an OLITERAL representing b as an untyped boolean.
func NewConstExpr
func NewConstExpr(val constant.Value, orig Node) Node
NewConstExpr returns an OLITERAL representing val, copying the position and type from orig.
func NewInt
func NewInt(pos src.XPos, v int64) Node
NewInt returns an OLITERAL representing v as an untyped integer.
func NewOne
func NewOne(pos src.XPos, typ *types.Type) Node
NewOne returns an OLITERAL representing 1 with the given type.
func NewString
func NewString(pos src.XPos, s string) Node
NewString returns an OLITERAL representing s as an untyped string.
func NewUintptr
func NewUintptr(pos src.XPos, v int64) Node
NewUintptr returns an OLITERAL representing v as a uintptr.
func NewZero
func NewZero(pos src.XPos, typ *types.Type) Node
NewZero returns a zero value of the given type.
func OuterValue
func OuterValue(n Node) Node
what's the outer value that a write to n affects? outer value means containing struct or array.
func ParamNames
func ParamNames(ft *types.Type) []Node
func StaticValue
func StaticValue(n Node) Node
StaticValue analyzes n to find the earliest expression that always evaluates to the same value as n, which might be from an enclosing function.
For example, given:
var x int = g() func() { y := x *p = int(y) }
calling StaticValue on the "int(y)" expression returns the outer "g()" expression.
func TypeNode
func TypeNode(t *types.Type) Node
TypeNode returns the Node representing the type t.
type Nodes
Nodes is a slice of Node.
type Nodes []Node
func TakeInit
func TakeInit(n Node) Nodes
func ToNodes
func ToNodes[T Node](s []T) Nodes
ToNodes returns s as a slice of Nodes.
func (*Nodes) Append
func (n *Nodes) Append(a ...Node)
Append appends entries to Nodes.
func (Nodes) Copy
func (n Nodes) Copy() Nodes
Copy returns a copy of the content of the slice.
func (Nodes) Format
func (l Nodes) Format(s fmt.State, verb rune)
Format implements formatting for a Nodes. The valid formats are:
%v Go syntax, semicolon-separated %.v Go syntax, comma-separated %+v Debug syntax, as in DumpList.
func (*Nodes) Prepend
func (n *Nodes) Prepend(a ...Node)
Prepend prepends entries to Nodes. If a slice is passed in, this will take ownership of it.
func (*Nodes) Take
func (n *Nodes) Take() []Node
Take clears n, returning its former contents.
type Op
type Op uint8
Node ops.
const ( OXXX Op = iota // names ONAME // var or func name // Unnamed arg or return value: f(int, string) (int, error) { etc } // Also used for a qualified package identifier that hasn't been resolved yet. ONONAME OTYPE // type name OLITERAL // literal ONIL // nil // expressions OADD // X + Y OSUB // X - Y OOR // X | Y OXOR // X ^ Y OADDSTR // +{List} (string addition, list elements are strings) OADDR // &X OANDAND // X && Y OAPPEND // append(Args); after walk, X may contain elem type descriptor OBYTES2STR // Type(X) (Type is string, X is a []byte) OBYTES2STRTMP // Type(X) (Type is string, X is a []byte, ephemeral) ORUNES2STR // Type(X) (Type is string, X is a []rune) OSTR2BYTES // Type(X) (Type is []byte, X is a string) OSTR2BYTESTMP // Type(X) (Type is []byte, X is a string, ephemeral) OSTR2RUNES // Type(X) (Type is []rune, X is a string) OSLICE2ARR // Type(X) (Type is [N]T, X is a []T) OSLICE2ARRPTR // Type(X) (Type is *[N]T, X is a []T) // X = Y or (if Def=true) X := Y // If Def, then Init includes a DCL node for X. OAS // Lhs = Rhs (x, y, z = a, b, c) or (if Def=true) Lhs := Rhs // If Def, then Init includes DCL nodes for Lhs OAS2 OAS2DOTTYPE // Lhs = Rhs (x, ok = I.(int)) OAS2FUNC // Lhs = Rhs (x, y = f()) OAS2MAPR // Lhs = Rhs (x, ok = m["foo"]) OAS2RECV // Lhs = Rhs (x, ok = <-c) OASOP // X AsOp= Y (x += y) OCALL // X(Args) (function call, method call or type conversion) // OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure. // Prior to walk, they are: X(Args), where Args is all regular arguments. // After walk, if any argument whose evaluation might requires temporary variable, // that temporary variable will be pushed to Init, Args will contain an updated // set of arguments. OCALLFUNC // X(Args) (function call f(args)) OCALLMETH // X(Args) (direct method call x.Method(args)) OCALLINTER // X(Args) (interface method call x.Method(args)) OCAP // cap(X) OCLEAR // clear(X) OCLOSE // close(X) OCLOSURE // func Type { Func.Closure.Body } (func literal) OCOMPLIT // Type{List} (composite literal, not yet lowered to specific form) OMAPLIT // Type{List} (composite literal, Type is map) OSTRUCTLIT // Type{List} (composite literal, Type is struct) OARRAYLIT // Type{List} (composite literal, Type is array) OSLICELIT // Type{List} (composite literal, Type is slice), Len is slice length. OPTRLIT // &X (X is composite literal) OCONV // Type(X) (type conversion) OCONVIFACE // Type(X) (type conversion, to interface) OCONVNOP // Type(X) (type conversion, no effect) OCOPY // copy(X, Y) ODCL // var X (declares X of type X.Type) // Used during parsing but don't last. ODCLFUNC // func f() or func (r) f() ODELETE // delete(Args) ODOT // X.Sel (X is of struct type) ODOTPTR // X.Sel (X is of pointer to struct type) ODOTMETH // X.Sel (X is non-interface, Sel is method name) ODOTINTER // X.Sel (X is interface, Sel is method name) OXDOT // X.Sel (before rewrite to one of the preceding) ODOTTYPE // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved); after walk, Itab contains address of interface type descriptor and Itab.X contains address of concrete type descriptor ODOTTYPE2 // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, Itab contains address of interface type descriptor OEQ // X == Y ONE // X != Y OLT // X < Y OLE // X <= Y OGE // X >= Y OGT // X > Y ODEREF // *X OINDEX // X[Index] (index of array or slice) OINDEXMAP // X[Index] (index of map) OKEY // Key:Value (key:value in struct/array/map literal) OSTRUCTKEY // Field:Value (key:value in struct literal, after type checking) OLEN // len(X) OMAKE // make(Args) (before type checking converts to one of the following) OMAKECHAN // make(Type[, Len]) (type is chan) OMAKEMAP // make(Type[, Len]) (type is map) OMAKESLICE // make(Type[, Len[, Cap]]) (type is slice) OMAKESLICECOPY // makeslicecopy(Type, Len, Cap) (type is slice; Len is length and Cap is the copied from slice) // OMAKESLICECOPY is created by the order pass and corresponds to: // s = make(Type, Len); copy(s, Cap) // // Bounded can be set on the node when Len == len(Cap) is known at compile time. // // This node is created so the walk pass can optimize this pattern which would // otherwise be hard to detect after the order pass. OMUL // X * Y ODIV // X / Y OMOD // X % Y OLSH // X << Y ORSH // X >> Y OAND // X & Y OANDNOT // X &^ Y ONEW // new(X); corresponds to calls to new in source code ONOT // !X OBITNOT // ^X OPLUS // +X ONEG // -X OOROR // X || Y OPANIC // panic(X) OPRINT // print(List) OPRINTLN // println(List) OPAREN // (X) OSEND // Chan <- Value OSLICE // X[Low : High] (X is untypechecked or slice) OSLICEARR // X[Low : High] (X is pointer to array) OSLICESTR // X[Low : High] (X is string) OSLICE3 // X[Low : High : Max] (X is untypedchecked or slice) OSLICE3ARR // X[Low : High : Max] (X is pointer to array) OSLICEHEADER // sliceheader{Ptr, Len, Cap} (Ptr is unsafe.Pointer, Len is length, Cap is capacity) OSTRINGHEADER // stringheader{Ptr, Len} (Ptr is unsafe.Pointer, Len is length) ORECOVER // recover() ORECOVERFP // recover(Args) w/ explicit FP argument ORECV // <-X ORUNESTR // Type(X) (Type is string, X is rune) OSELRECV2 // like OAS2: Lhs = Rhs where len(Lhs)=2, len(Rhs)=1, Rhs[0].Op = ORECV (appears as .Var of OCASE) OMIN // min(List) OMAX // max(List) OREAL // real(X) OIMAG // imag(X) OCOMPLEX // complex(X, Y) OUNSAFEADD // unsafe.Add(X, Y) OUNSAFESLICE // unsafe.Slice(X, Y) OUNSAFESLICEDATA // unsafe.SliceData(X) OUNSAFESTRING // unsafe.String(X, Y) OUNSAFESTRINGDATA // unsafe.StringData(X) OMETHEXPR // X(Args) (method expression T.Method(args), first argument is the method receiver) OMETHVALUE // X.Sel (method expression t.Method, not called) // statements OBLOCK // { List } (block of code) OBREAK // break [Label] // OCASE: case List: Body (List==nil means default) // For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL // for nil) or an ODYNAMICTYPE indicating a runtime type for generics. // If a type-switch variable is specified, Var is an // ONAME for the version of the type-switch variable with the specified // type. OCASE OCONTINUE // continue [Label] ODEFER // defer Call OFALL // fallthrough OFOR // for Init; Cond; Post { Body } OGOTO // goto Label OIF // if Init; Cond { Then } else { Else } OLABEL // Label: OGO // go Call ORANGE // for Key, Value = range X { Body } ORETURN // return Results OSELECT // select { Cases } OSWITCH // switch Init; Expr { Cases } // OTYPESW: X := Y.(type) (appears as .Tag of OSWITCH) // X is nil if there is no type-switch variable OTYPESW // misc // intermediate representation of an inlined call. Uses Init (assignments // for the captured variables, parameters, retvars, & INLMARK op), // Body (body of the inlined function), and ReturnVars (list of // return values) OINLCALL // intermediary representation of an inlined call. OMAKEFACE // construct an interface value from rtype/itab and data pointers OITAB // rtype/itab pointer of an interface value OIDATA // data pointer of an interface value OSPTR // base pointer of a slice or string. Bounded==1 means known non-nil. OCFUNC // reference to c function pointer (not go func value) OCHECKNIL // emit code to ensure pointer/interface not nil ORESULT // result of a function call; Xoffset is stack offset OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree. OLINKSYMOFFSET // offset within a name OJUMPTABLE // A jump table structure for implementing dense expression switches OINTERFACESWITCH // A type switch with interface cases // opcodes for generics ODYNAMICDOTTYPE // x = i.(T) where T is a type parameter (or derived from a type parameter) ODYNAMICDOTTYPE2 // x, ok = i.(T) where T is a type parameter (or derived from a type parameter) ODYNAMICTYPE // a type node for type switches (represents a dynamic target type for a type switch) // arch-specific opcodes OTAILCALL // tail call to another function OGETG // runtime.getg() (read g pointer) OGETCALLERSP // internal/runtime/sys.GetCallerSP() (stack pointer in caller frame) OEND )
func (Op) Format
func (o Op) Format(s fmt.State, verb rune)
Format implements formatting for an Op. The valid formats are:
%v Go syntax ("+", "<-", "print") %+v Debug syntax ("ADD", "RECV", "PRINT")
func (Op) GoString
func (o Op) GoString() string
GoString returns the Go syntax for the Op, or else its name.
func (Op) IsCmp
func (op Op) IsCmp() bool
IsCmp reports whether op is a comparison operation (==, !=, <, <=, >, or >=).
func (Op) IsSlice3
func (o Op) IsSlice3() bool
IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR). o must be a slicing op.
func (Op) String
func (i Op) String() string
type Package
A Package holds information about the package being compiled.
type Package struct { // Imports, listed in source order. // See golang.org/issue/31636. Imports []*types.Pkg // Init functions, listed in source order. Inits []*Func // Funcs contains all (instantiated) functions, methods, and // function literals to be compiled. Funcs []*Func // Externs holds constants, (non-generic) types, and variables // declared at package scope. Externs []*Name // AsmHdrDecls holds declared constants and struct types that should // be included in -asmhdr output. It's only populated when -asmhdr // is set. AsmHdrDecls []*Name // Cgo directives. CgoPragmas [][]string // Variables with //go:embed lines. Embeds []*Name // PluginExports holds exported functions and variables that are // accessible through the package plugin API. It's only populated // for -buildmode=plugin (i.e., compiling package main and -dynlink // is set). PluginExports []*Name }
type ParenExpr
A ParenExpr is a parenthesized expression (X). It may end up being a value or a type.
type ParenExpr struct {
X Node
// contains filtered or unexported fields
}
func NewParenExpr
func NewParenExpr(pos src.XPos, x Node) *ParenExpr
func (*ParenExpr) Bounded
func (n *ParenExpr) Bounded() bool
func (*ParenExpr) Format
func (n *ParenExpr) Format(s fmt.State, verb rune)
func (*ParenExpr) Implicit
func (n *ParenExpr) Implicit() bool
func (*ParenExpr) Init
func (n *ParenExpr) Init() Nodes
func (*ParenExpr) MarkNonNil
func (n *ParenExpr) MarkNonNil()
func (*ParenExpr) NonNil
func (n *ParenExpr) NonNil() bool
func (*ParenExpr) PtrInit
func (n *ParenExpr) PtrInit() *Nodes
func (*ParenExpr) SetBounded
func (n *ParenExpr) SetBounded(b bool)
func (*ParenExpr) SetImplicit
func (n *ParenExpr) SetImplicit(b bool)
func (*ParenExpr) SetInit
func (n *ParenExpr) SetInit(x Nodes)
func (*ParenExpr) SetTransient
func (n *ParenExpr) SetTransient(b bool)
func (*ParenExpr) SetType
func (n *ParenExpr) SetType(x *types.Type)
func (*ParenExpr) Transient
func (n *ParenExpr) Transient() bool
func (*ParenExpr) Type
func (n *ParenExpr) Type() *types.Type
type PragmaFlag
type PragmaFlag uint16
const ( // Func pragmas. Nointerface PragmaFlag = 1 << iota Noescape // func parameters don't escape Norace // func must not have race detector annotations Nosplit // func should not execute on separate stack Noinline // func should not be inlined NoCheckPtr // func should not be instrumented by checkptr CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all UintptrKeepAlive // pointers converted to uintptr must be kept alive UintptrEscapes // pointers converted to uintptr escape // Runtime-only func pragmas. // See ../../../../runtime/HACKING.md for detailed descriptions. Systemstack // func must run on system stack Nowritebarrier // emit compiler error instead of write barrier Nowritebarrierrec // error on write barrier in this or recursive callees Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees // Go command pragmas GoBuildPragma RegisterParams // TODO(register args) remove after register abi is working )
type RangeStmt
A RangeStmt is a range loop: for Key, Value = range X { Body }
type RangeStmt struct { Label *types.Sym Def bool X Node RType Node `mknode:"-"` // see reflectdata/helpers.go Key Node Value Node Body Nodes DistinctVars bool Prealloc *Name // When desugaring the RangeStmt during walk, the assignments to Key // and Value may require OCONVIFACE operations. If so, these fields // will be copied to their respective ConvExpr fields. KeyTypeWord Node `mknode:"-"` KeySrcRType Node `mknode:"-"` ValueTypeWord Node `mknode:"-"` ValueSrcRType Node `mknode:"-"` // contains filtered or unexported fields }
func NewRangeStmt
func NewRangeStmt(pos src.XPos, key, value, x Node, body []Node, distinctVars bool) *RangeStmt
func (*RangeStmt) Format
func (n *RangeStmt) Format(s fmt.State, verb rune)
func (*RangeStmt) Init
func (n *RangeStmt) Init() Nodes
func (*RangeStmt) PtrInit
func (n *RangeStmt) PtrInit() *Nodes
func (*RangeStmt) SetInit
func (n *RangeStmt) SetInit(x Nodes)
type ReassignOracle
A ReassignOracle efficiently answers queries about whether local variables are reassigned. This helper works by looking for function params and short variable declarations (e.g. https://go.dev/ref/spec#Short_variable_declarations) that are neither address taken nor subsequently re-assigned. It is intended to operate much like "ir.StaticValue" and "ir.Reassigned", but in a way that does just a single walk of the containing function (as opposed to a new walk on every call).
type ReassignOracle struct {
// contains filtered or unexported fields
}
func (*ReassignOracle) Init
func (ro *ReassignOracle) Init(fn *Func)
Init initializes the oracle based on the IR in function fn, laying the groundwork for future calls to the StaticValue and Reassigned methods. If the fn's IR is subsequently modified, Init must be called again.
func (*ReassignOracle) Reassigned
func (ro *ReassignOracle) Reassigned(n *Name) bool
Reassigned method has the same semantics as the ir package function of the same name; see comments on Reassigned for more info.
func (*ReassignOracle) StaticValue
func (ro *ReassignOracle) StaticValue(n Node) Node
StaticValue method has the same semantics as the ir package function of the same name; see comments on StaticValue.
type ResultExpr
A ResultExpr represents a direct access to a result.
type ResultExpr struct { Index int64 // index of the result expr. // contains filtered or unexported fields }
func NewResultExpr
func NewResultExpr(pos src.XPos, typ *types.Type, index int64) *ResultExpr
func (*ResultExpr) Bounded
func (n *ResultExpr) Bounded() bool
func (*ResultExpr) Format
func (n *ResultExpr) Format(s fmt.State, verb rune)
func (*ResultExpr) Init
func (n *ResultExpr) Init() Nodes
func (*ResultExpr) MarkNonNil
func (n *ResultExpr) MarkNonNil()
func (*ResultExpr) NonNil
func (n *ResultExpr) NonNil() bool
func (*ResultExpr) PtrInit
func (n *ResultExpr) PtrInit() *Nodes
func (*ResultExpr) SetBounded
func (n *ResultExpr) SetBounded(b bool)
func (*ResultExpr) SetInit
func (n *ResultExpr) SetInit(x Nodes)
func (*ResultExpr) SetTransient
func (n *ResultExpr) SetTransient(b bool)
func (*ResultExpr) SetType
func (n *ResultExpr) SetType(x *types.Type)
func (*ResultExpr) Transient
func (n *ResultExpr) Transient() bool
func (*ResultExpr) Type
func (n *ResultExpr) Type() *types.Type
type ReturnStmt
A ReturnStmt is a return statement.
type ReturnStmt struct { Results Nodes // return list // contains filtered or unexported fields }
func NewReturnStmt
func NewReturnStmt(pos src.XPos, results []Node) *ReturnStmt
func (*ReturnStmt) Format
func (n *ReturnStmt) Format(s fmt.State, verb rune)
func (*ReturnStmt) Init
func (n *ReturnStmt) Init() Nodes
func (*ReturnStmt) PtrInit
func (n *ReturnStmt) PtrInit() *Nodes
func (*ReturnStmt) SetInit
func (n *ReturnStmt) SetInit(x Nodes)
type ScopeID
A ScopeID represents a lexical scope within a function.
type ScopeID int32
type SelectStmt
A SelectStmt is a block: { Cases }.
type SelectStmt struct { Label *types.Sym Cases []*CommClause // TODO(rsc): Instead of recording here, replace with a block? Compiled Nodes // compiled form, after walkSelect // contains filtered or unexported fields }
func NewSelectStmt
func NewSelectStmt(pos src.XPos, cases []*CommClause) *SelectStmt
func (*SelectStmt) Format
func (n *SelectStmt) Format(s fmt.State, verb rune)
func (*SelectStmt) Init
func (n *SelectStmt) Init() Nodes
func (*SelectStmt) PtrInit
func (n *SelectStmt) PtrInit() *Nodes
func (*SelectStmt) SetInit
func (n *SelectStmt) SetInit(x Nodes)
type SelectorExpr
A SelectorExpr is a selector expression X.Sel.
type SelectorExpr struct { X Node // Sel is the name of the field or method being selected, without (in the // case of methods) any preceding type specifier. If the field/method is // exported, than the Sym uses the local package regardless of the package // of the containing type. Sel *types.Sym // The actual selected field - may not be filled in until typechecking. Selection *types.Field Prealloc *Name // preallocated storage for OMETHVALUE, if any // contains filtered or unexported fields }
func NewSelectorExpr
func NewSelectorExpr(pos src.XPos, op Op, x Node, sel *types.Sym) *SelectorExpr
func (*SelectorExpr) Bounded
func (n *SelectorExpr) Bounded() bool
func (*SelectorExpr) Format
func (n *SelectorExpr) Format(s fmt.State, verb rune)
func (*SelectorExpr) FuncName
func (n *SelectorExpr) FuncName() *Name
func (*SelectorExpr) Implicit
func (n *SelectorExpr) Implicit() bool
func (*SelectorExpr) Init
func (n *SelectorExpr) Init() Nodes
func (*SelectorExpr) MarkNonNil
func (n *SelectorExpr) MarkNonNil()
func (*SelectorExpr) NonNil
func (n *SelectorExpr) NonNil() bool
func (*SelectorExpr) Offset
func (n *SelectorExpr) Offset() int64
func (*SelectorExpr) PtrInit
func (n *SelectorExpr) PtrInit() *Nodes
func (*SelectorExpr) SetBounded
func (n *SelectorExpr) SetBounded(b bool)
func (*SelectorExpr) SetImplicit
func (n *SelectorExpr) SetImplicit(b bool)
func (*SelectorExpr) SetInit
func (n *SelectorExpr) SetInit(x Nodes)
func (*SelectorExpr) SetOp
func (n *SelectorExpr) SetOp(op Op)
func (*SelectorExpr) SetTransient
func (n *SelectorExpr) SetTransient(b bool)
func (*SelectorExpr) SetType
func (n *SelectorExpr) SetType(x *types.Type)
func (*SelectorExpr) Sym
func (n *SelectorExpr) Sym() *types.Sym
func (*SelectorExpr) Transient
func (n *SelectorExpr) Transient() bool
func (*SelectorExpr) Type
func (n *SelectorExpr) Type() *types.Type
type SendStmt
A SendStmt is a send statement: X <- Y.
type SendStmt struct {
Chan Node
Value Node
// contains filtered or unexported fields
}
func NewSendStmt
func NewSendStmt(pos src.XPos, ch, value Node) *SendStmt
func (*SendStmt) Format
func (n *SendStmt) Format(s fmt.State, verb rune)
func (*SendStmt) Init
func (n *SendStmt) Init() Nodes
func (*SendStmt) PtrInit
func (n *SendStmt) PtrInit() *Nodes
func (*SendStmt) SetInit
func (n *SendStmt) SetInit(x Nodes)
type SliceExpr
A SliceExpr is a slice expression X[Low:High] or X[Low:High:Max].
type SliceExpr struct {
X Node
Low Node
High Node
Max Node
// contains filtered or unexported fields
}
func NewSliceExpr
func NewSliceExpr(pos src.XPos, op Op, x, low, high, max Node) *SliceExpr
func (*SliceExpr) Bounded
func (n *SliceExpr) Bounded() bool
func (*SliceExpr) Format
func (n *SliceExpr) Format(s fmt.State, verb rune)
func (*SliceExpr) Init
func (n *SliceExpr) Init() Nodes
func (*SliceExpr) MarkNonNil
func (n *SliceExpr) MarkNonNil()
func (*SliceExpr) NonNil
func (n *SliceExpr) NonNil() bool
func (*SliceExpr) PtrInit
func (n *SliceExpr) PtrInit() *Nodes
func (*SliceExpr) SetBounded
func (n *SliceExpr) SetBounded(b bool)
func (*SliceExpr) SetInit
func (n *SliceExpr) SetInit(x Nodes)
func (*SliceExpr) SetOp
func (n *SliceExpr) SetOp(op Op)
func (*SliceExpr) SetTransient
func (n *SliceExpr) SetTransient(b bool)
func (*SliceExpr) SetType
func (n *SliceExpr) SetType(x *types.Type)
func (*SliceExpr) Transient
func (n *SliceExpr) Transient() bool
func (*SliceExpr) Type
func (n *SliceExpr) Type() *types.Type
type SliceHeaderExpr
A SliceHeader expression constructs a slice header from its parts.
type SliceHeaderExpr struct {
Ptr Node
Len Node
Cap Node
// contains filtered or unexported fields
}
func NewSliceHeaderExpr
func NewSliceHeaderExpr(pos src.XPos, typ *types.Type, ptr, len, cap Node) *SliceHeaderExpr
func (*SliceHeaderExpr) Bounded
func (n *SliceHeaderExpr) Bounded() bool
func (*SliceHeaderExpr) Format
func (n *SliceHeaderExpr) Format(s fmt.State, verb rune)
func (*SliceHeaderExpr) Init
func (n *SliceHeaderExpr) Init() Nodes
func (*SliceHeaderExpr) MarkNonNil
func (n *SliceHeaderExpr) MarkNonNil()
func (*SliceHeaderExpr) NonNil
func (n *SliceHeaderExpr) NonNil() bool
func (*SliceHeaderExpr) PtrInit
func (n *SliceHeaderExpr) PtrInit() *Nodes
func (*SliceHeaderExpr) SetBounded
func (n *SliceHeaderExpr) SetBounded(b bool)
func (*SliceHeaderExpr) SetInit
func (n *SliceHeaderExpr) SetInit(x Nodes)
func (*SliceHeaderExpr) SetTransient
func (n *SliceHeaderExpr) SetTransient(b bool)
func (*SliceHeaderExpr) SetType
func (n *SliceHeaderExpr) SetType(x *types.Type)
func (*SliceHeaderExpr) Transient
func (n *SliceHeaderExpr) Transient() bool
func (*SliceHeaderExpr) Type
func (n *SliceHeaderExpr) Type() *types.Type
type StarExpr
A StarExpr is a dereference expression *X. It may end up being a value or a type.
type StarExpr struct {
X Node
// contains filtered or unexported fields
}
func NewStarExpr
func NewStarExpr(pos src.XPos, x Node) *StarExpr
func (*StarExpr) Bounded
func (n *StarExpr) Bounded() bool
func (*StarExpr) Format
func (n *StarExpr) Format(s fmt.State, verb rune)
func (*StarExpr) Implicit
func (n *StarExpr) Implicit() bool
func (*StarExpr) Init
func (n *StarExpr) Init() Nodes
func (*StarExpr) MarkNonNil
func (n *StarExpr) MarkNonNil()
func (*StarExpr) NonNil
func (n *StarExpr) NonNil() bool
func (*StarExpr) PtrInit
func (n *StarExpr) PtrInit() *Nodes
func (*StarExpr) SetBounded
func (n *StarExpr) SetBounded(b bool)
func (*StarExpr) SetImplicit
func (n *StarExpr) SetImplicit(b bool)
func (*StarExpr) SetInit
func (n *StarExpr) SetInit(x Nodes)
func (*StarExpr) SetTransient
func (n *StarExpr) SetTransient(b bool)
func (*StarExpr) SetType
func (n *StarExpr) SetType(x *types.Type)
func (*StarExpr) Transient
func (n *StarExpr) Transient() bool
func (*StarExpr) Type
func (n *StarExpr) Type() *types.Type
type Stmt
A Stmt is a Node that can appear as a statement. This includes statement-like expressions such as f().
(It's possible it should include <-c, but that would require splitting ORECV out of UnaryExpr, which hasn't yet been necessary. Maybe instead we will introduce ExprStmt at some point.)
type Stmt interface {
Node
// contains filtered or unexported methods
}
type StringHeaderExpr
A StringHeaderExpr expression constructs a string header from its parts.
type StringHeaderExpr struct {
Ptr Node
Len Node
// contains filtered or unexported fields
}
func NewStringHeaderExpr
func NewStringHeaderExpr(pos src.XPos, ptr, len Node) *StringHeaderExpr
func (*StringHeaderExpr) Bounded
func (n *StringHeaderExpr) Bounded() bool
func (*StringHeaderExpr) Format
func (n *StringHeaderExpr) Format(s fmt.State, verb rune)
func (*StringHeaderExpr) Init
func (n *StringHeaderExpr) Init() Nodes
func (*StringHeaderExpr) MarkNonNil
func (n *StringHeaderExpr) MarkNonNil()
func (*StringHeaderExpr) NonNil
func (n *StringHeaderExpr) NonNil() bool
func (*StringHeaderExpr) PtrInit
func (n *StringHeaderExpr) PtrInit() *Nodes
func (*StringHeaderExpr) SetBounded
func (n *StringHeaderExpr) SetBounded(b bool)
func (*StringHeaderExpr) SetInit
func (n *StringHeaderExpr) SetInit(x Nodes)
func (*StringHeaderExpr) SetTransient
func (n *StringHeaderExpr) SetTransient(b bool)
func (*StringHeaderExpr) SetType
func (n *StringHeaderExpr) SetType(x *types.Type)
func (*StringHeaderExpr) Transient
func (n *StringHeaderExpr) Transient() bool
func (*StringHeaderExpr) Type
func (n *StringHeaderExpr) Type() *types.Type
type StructKeyExpr
A StructKeyExpr is a Field: Value composite literal key.
type StructKeyExpr struct {
Field *types.Field
Value Node
// contains filtered or unexported fields
}
func NewStructKeyExpr
func NewStructKeyExpr(pos src.XPos, field *types.Field, value Node) *StructKeyExpr
func (*StructKeyExpr) Bounded
func (n *StructKeyExpr) Bounded() bool
func (*StructKeyExpr) Format
func (n *StructKeyExpr) Format(s fmt.State, verb rune)
func (*StructKeyExpr) Init
func (n *StructKeyExpr) Init() Nodes
func (*StructKeyExpr) MarkNonNil
func (n *StructKeyExpr) MarkNonNil()
func (*StructKeyExpr) NonNil
func (n *StructKeyExpr) NonNil() bool
func (*StructKeyExpr) PtrInit
func (n *StructKeyExpr) PtrInit() *Nodes
func (*StructKeyExpr) SetBounded
func (n *StructKeyExpr) SetBounded(b bool)
func (*StructKeyExpr) SetInit
func (n *StructKeyExpr) SetInit(x Nodes)
func (*StructKeyExpr) SetTransient
func (n *StructKeyExpr) SetTransient(b bool)
func (*StructKeyExpr) SetType
func (n *StructKeyExpr) SetType(x *types.Type)
func (*StructKeyExpr) Sym
func (n *StructKeyExpr) Sym() *types.Sym
func (*StructKeyExpr) Transient
func (n *StructKeyExpr) Transient() bool
func (*StructKeyExpr) Type
func (n *StructKeyExpr) Type() *types.Type
type SwitchStmt
A SwitchStmt is a switch statement: switch Init; Tag { Cases }.
type SwitchStmt struct { Tag Node Cases []*CaseClause Label *types.Sym // TODO(rsc): Instead of recording here, replace with a block? Compiled Nodes // compiled form, after walkSwitch // contains filtered or unexported fields }
func NewSwitchStmt
func NewSwitchStmt(pos src.XPos, tag Node, cases []*CaseClause) *SwitchStmt
func (*SwitchStmt) Format
func (n *SwitchStmt) Format(s fmt.State, verb rune)
func (*SwitchStmt) Init
func (n *SwitchStmt) Init() Nodes
func (*SwitchStmt) PtrInit
func (n *SwitchStmt) PtrInit() *Nodes
func (*SwitchStmt) SetInit
func (n *SwitchStmt) SetInit(x Nodes)
type SymAndPos
type SymAndPos struct { Sym *obj.LSym // LSym of callee Pos src.XPos // line of call }
type TailCallStmt
A TailCallStmt is a tail call statement, which is used for back-end code generation to jump directly to another function entirely.
type TailCallStmt struct { Call *CallExpr // the underlying call // contains filtered or unexported fields }
func NewTailCallStmt
func NewTailCallStmt(pos src.XPos, call *CallExpr) *TailCallStmt
func (*TailCallStmt) Format
func (n *TailCallStmt) Format(s fmt.State, verb rune)
func (*TailCallStmt) Init
func (n *TailCallStmt) Init() Nodes
func (*TailCallStmt) PtrInit
func (n *TailCallStmt) PtrInit() *Nodes
func (*TailCallStmt) SetInit
func (n *TailCallStmt) SetInit(x Nodes)
type TypeAssertExpr
A TypeAssertionExpr is a selector expression X.(Type). Before type-checking, the type is Ntype.
type TypeAssertExpr struct { X Node // Runtime type information provided by walkDotType for // assertions from non-empty interface to concrete type. ITab Node `mknode:"-"` // *runtime.itab for Type implementing X's type // An internal/abi.TypeAssert descriptor to pass to the runtime. Descriptor *obj.LSym // contains filtered or unexported fields }
func NewTypeAssertExpr
func NewTypeAssertExpr(pos src.XPos, x Node, typ *types.Type) *TypeAssertExpr
func (*TypeAssertExpr) Bounded
func (n *TypeAssertExpr) Bounded() bool
func (*TypeAssertExpr) Format
func (n *TypeAssertExpr) Format(s fmt.State, verb rune)
func (*TypeAssertExpr) Init
func (n *TypeAssertExpr) Init() Nodes
func (*TypeAssertExpr) MarkNonNil
func (n *TypeAssertExpr) MarkNonNil()
func (*TypeAssertExpr) NonNil
func (n *TypeAssertExpr) NonNil() bool
func (*TypeAssertExpr) PtrInit
func (n *TypeAssertExpr) PtrInit() *Nodes
func (*TypeAssertExpr) SetBounded
func (n *TypeAssertExpr) SetBounded(b bool)
func (*TypeAssertExpr) SetInit
func (n *TypeAssertExpr) SetInit(x Nodes)
func (*TypeAssertExpr) SetOp
func (n *TypeAssertExpr) SetOp(op Op)
func (*TypeAssertExpr) SetTransient
func (n *TypeAssertExpr) SetTransient(b bool)
func (*TypeAssertExpr) SetType
func (n *TypeAssertExpr) SetType(x *types.Type)
func (*TypeAssertExpr) Transient
func (n *TypeAssertExpr) Transient() bool
func (*TypeAssertExpr) Type
func (n *TypeAssertExpr) Type() *types.Type
type TypeSwitchGuard
A TypeSwitchGuard is the [Name :=] X.(type) in a type switch.
type TypeSwitchGuard struct {
Tag *Ident
X Node
Used bool
// contains filtered or unexported fields
}
func NewTypeSwitchGuard
func NewTypeSwitchGuard(pos src.XPos, tag *Ident, x Node) *TypeSwitchGuard
func (*TypeSwitchGuard) Esc
func (n *TypeSwitchGuard) Esc() uint16
func (*TypeSwitchGuard) Format
func (n *TypeSwitchGuard) Format(s fmt.State, verb rune)
func (*TypeSwitchGuard) Init
func (n *TypeSwitchGuard) Init() Nodes
func (*TypeSwitchGuard) MarkNonNil
func (n *TypeSwitchGuard) MarkNonNil()
func (*TypeSwitchGuard) Name
func (n *TypeSwitchGuard) Name() *Name
func (*TypeSwitchGuard) NonNil
func (n *TypeSwitchGuard) NonNil() bool
func (*TypeSwitchGuard) Op
func (n *TypeSwitchGuard) Op() Op
op can be read, but not written. An embedding implementation can provide a SetOp if desired. (The panicking SetOp is with the other panics below.)
func (*TypeSwitchGuard) Pos
func (n *TypeSwitchGuard) Pos() src.XPos
func (*TypeSwitchGuard) SetEsc
func (n *TypeSwitchGuard) SetEsc(x uint16)
func (*TypeSwitchGuard) SetPos
func (n *TypeSwitchGuard) SetPos(x src.XPos)
func (*TypeSwitchGuard) SetType
func (n *TypeSwitchGuard) SetType(*types.Type)
func (*TypeSwitchGuard) SetTypecheck
func (n *TypeSwitchGuard) SetTypecheck(x uint8)
func (*TypeSwitchGuard) SetVal
func (n *TypeSwitchGuard) SetVal(v constant.Value)
func (*TypeSwitchGuard) SetWalked
func (n *TypeSwitchGuard) SetWalked(x bool)
func (*TypeSwitchGuard) Sym
func (n *TypeSwitchGuard) Sym() *types.Sym
func (*TypeSwitchGuard) Type
func (n *TypeSwitchGuard) Type() *types.Type
func (*TypeSwitchGuard) Typecheck
func (n *TypeSwitchGuard) Typecheck() uint8
func (*TypeSwitchGuard) Val
func (n *TypeSwitchGuard) Val() constant.Value
func (*TypeSwitchGuard) Walked
func (n *TypeSwitchGuard) Walked() bool
type UnaryExpr
A UnaryExpr is a unary expression Op X, or Op(X) for a builtin function that does not end up being a call.
type UnaryExpr struct {
X Node
// contains filtered or unexported fields
}
func NewUnaryExpr
func NewUnaryExpr(pos src.XPos, op Op, x Node) *UnaryExpr
func (*UnaryExpr) Bounded
func (n *UnaryExpr) Bounded() bool
func (*UnaryExpr) Format
func (n *UnaryExpr) Format(s fmt.State, verb rune)
func (*UnaryExpr) Init
func (n *UnaryExpr) Init() Nodes
func (*UnaryExpr) MarkNonNil
func (n *UnaryExpr) MarkNonNil()
func (*UnaryExpr) NonNil
func (n *UnaryExpr) NonNil() bool
func (*UnaryExpr) PtrInit
func (n *UnaryExpr) PtrInit() *Nodes
func (*UnaryExpr) SetBounded
func (n *UnaryExpr) SetBounded(b bool)
func (*UnaryExpr) SetInit
func (n *UnaryExpr) SetInit(x Nodes)
func (*UnaryExpr) SetOp
func (n *UnaryExpr) SetOp(op Op)
func (*UnaryExpr) SetTransient
func (n *UnaryExpr) SetTransient(b bool)
func (*UnaryExpr) SetType
func (n *UnaryExpr) SetType(x *types.Type)
func (*UnaryExpr) Transient
func (n *UnaryExpr) Transient() bool
func (*UnaryExpr) Type
func (n *UnaryExpr) Type() *types.Type
type WasmExport
WasmExport stores metadata associated with the //go:wasmexport pragma.
type WasmExport struct { Name string }
type WasmImport
WasmImport stores metadata associated with the //go:wasmimport pragma.
type WasmImport struct { Module string Name string }