Source file test/typeparam/absdiffimp.dir/a.go
1 // Copyright 2021 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package a 6 7 type Numeric interface { 8 ~int | ~int8 | ~int16 | ~int32 | ~int64 | 9 ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | 10 ~float32 | ~float64 | 11 ~complex64 | ~complex128 12 } 13 14 // numericAbs matches numeric types with an Abs method. 15 type numericAbs[T any] interface { 16 Numeric 17 Abs() T 18 } 19 20 // AbsDifference computes the absolute value of the difference of 21 // a and b, where the absolute value is determined by the Abs method. 22 func absDifference[T numericAbs[T]](a, b T) T { 23 d := a - b 24 return d.Abs() 25 } 26 27 // orderedNumeric matches numeric types that support the < operator. 28 type orderedNumeric interface { 29 ~int | ~int8 | ~int16 | ~int32 | ~int64 | 30 ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | 31 ~float32 | ~float64 32 } 33 34 // Complex matches the two complex types, which do not have a < operator. 35 type Complex interface { 36 ~complex64 | ~complex128 37 } 38 39 // For now, a lone type parameter is not permitted as RHS in a type declaration (issue #45639). 40 // // orderedAbs is a helper type that defines an Abs method for 41 // // ordered numeric types. 42 // type orderedAbs[T orderedNumeric] T 43 // 44 // func (a orderedAbs[T]) Abs() orderedAbs[T] { 45 // if a < 0 { 46 // return -a 47 // } 48 // return a 49 // } 50 // 51 // // complexAbs is a helper type that defines an Abs method for 52 // // complex types. 53 // type complexAbs[T Complex] T 54 // 55 // func (a complexAbs[T]) Abs() complexAbs[T] { 56 // r := float64(real(a)) 57 // i := float64(imag(a)) 58 // d := math.Sqrt(r*r + i*i) 59 // return complexAbs[T](complex(d, 0)) 60 // } 61 // 62 // // OrderedAbsDifference returns the absolute value of the difference 63 // // between a and b, where a and b are of an ordered type. 64 // func OrderedAbsDifference[T orderedNumeric](a, b T) T { 65 // return T(absDifference(orderedAbs[T](a), orderedAbs[T](b))) 66 // } 67 // 68 // // ComplexAbsDifference returns the absolute value of the difference 69 // // between a and b, where a and b are of a complex type. 70 // func ComplexAbsDifference[T Complex](a, b T) T { 71 // return T(absDifference(complexAbs[T](a), complexAbs[T](b))) 72 // } 73