Source file test/typeparam/absdiff.go
1 // run 2 3 // Copyright 2020 The Go Authors. All rights reserved. 4 // Use of this source code is governed by a BSD-style 5 // license that can be found in the LICENSE file. 6 7 package main 8 9 type Numeric interface { 10 ~int | ~int8 | ~int16 | ~int32 | ~int64 | 11 ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | 12 ~float32 | ~float64 | 13 ~complex64 | ~complex128 14 } 15 16 // numericAbs matches numeric types with an Abs method. 17 type numericAbs[T any] interface { 18 Numeric 19 Abs() T 20 } 21 22 // AbsDifference computes the absolute value of the difference of 23 // a and b, where the absolute value is determined by the Abs method. 24 func absDifference[T numericAbs[T]](a, b T) T { 25 d := a - b 26 return d.Abs() 27 } 28 29 // orderedNumeric matches numeric types that support the < operator. 30 type orderedNumeric interface { 31 ~int | ~int8 | ~int16 | ~int32 | ~int64 | 32 ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | 33 ~float32 | ~float64 34 } 35 36 // Complex matches the two complex types, which do not have a < operator. 37 type Complex interface { 38 ~complex64 | ~complex128 39 } 40 41 // For now, a lone type parameter is not permitted as RHS in a type declaration (issue #45639). 42 // // orderedAbs is a helper type that defines an Abs method for 43 // // ordered numeric types. 44 // type orderedAbs[T orderedNumeric] T 45 // 46 // func (a orderedAbs[T]) Abs() orderedAbs[T] { 47 // if a < 0 { 48 // return -a 49 // } 50 // return a 51 // } 52 // 53 // // complexAbs is a helper type that defines an Abs method for 54 // // complex types. 55 // type complexAbs[T Complex] T 56 // 57 // func (a complexAbs[T]) Abs() complexAbs[T] { 58 // r := float64(real(a)) 59 // i := float64(imag(a)) 60 // d := math.Sqrt(r*r + i*i) 61 // return complexAbs[T](complex(d, 0)) 62 // } 63 // 64 // // OrderedAbsDifference returns the absolute value of the difference 65 // // between a and b, where a and b are of an ordered type. 66 // func orderedAbsDifference[T orderedNumeric](a, b T) T { 67 // return T(absDifference(orderedAbs[T](a), orderedAbs[T](b))) 68 // } 69 // 70 // // ComplexAbsDifference returns the absolute value of the difference 71 // // between a and b, where a and b are of a complex type. 72 // func complexAbsDifference[T Complex](a, b T) T { 73 // return T(absDifference(complexAbs[T](a), complexAbs[T](b))) 74 // } 75 76 func main() { 77 // // For now, a lone type parameter is not permitted as RHS in a type declaration (issue #45639). 78 // if got, want := orderedAbsDifference(1.0, -2.0), 3.0; got != want { 79 // panic(fmt.Sprintf("got = %v, want = %v", got, want)) 80 // } 81 // if got, want := orderedAbsDifference(-1.0, 2.0), 3.0; got != want { 82 // panic(fmt.Sprintf("got = %v, want = %v", got, want)) 83 // } 84 // if got, want := orderedAbsDifference(-20, 15), 35; got != want { 85 // panic(fmt.Sprintf("got = %v, want = %v", got, want)) 86 // } 87 // 88 // if got, want := complexAbsDifference(5.0+2.0i, 2.0-2.0i), 5+0i; got != want { 89 // panic(fmt.Sprintf("got = %v, want = %v", got, want)) 90 // } 91 // if got, want := complexAbsDifference(2.0-2.0i, 5.0+2.0i), 5+0i; got != want { 92 // panic(fmt.Sprintf("got = %v, want = %v", got, want)) 93 // } 94 } 95