Text file
test/cmplxdivide.c
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // This C program generates the file cmplxdivide1.go. It uses the
6 // output of the operations by C99 as the reference to check
7 // the implementation of complex numbers in Go.
8 // The generated file, cmplxdivide1.go, is compiled along
9 // with the driver cmplxdivide.go (the names are confusing
10 // and unimaginative) to run the actual test. This is done by
11 // the usual test runner.
12 //
13 // The file cmplxdivide1.go is checked in to the repository, but
14 // if it needs to be regenerated, compile and run this C program
15 // like this:
16 // gcc '-std=c99' cmplxdivide.c && a.out >cmplxdivide1.go
17
18 #include <complex.h>
19 #include <math.h>
20 #include <stdio.h>
21 #include <string.h>
22
23 #define nelem(x) (sizeof(x)/sizeof((x)[0]))
24
25 double f[] = {
26 0.0,
27 -0.0,
28 1.0,
29 -1.0,
30 2.0,
31 NAN,
32 INFINITY,
33 -INFINITY,
34 };
35
36 char* fmt(double g) {
37 static char buf[10][30];
38 static int n;
39 char *p;
40
41 p = buf[n++];
42 if(n == 10) {
43 n = 0;
44 }
45
46 sprintf(p, "%g", g);
47
48 if(strcmp(p, "0") == 0) {
49 strcpy(p, "zero");
50 return p;
51 }
52
53 if(strcmp(p, "-0") == 0) {
54 strcpy(p, "-zero");
55 return p;
56 }
57
58 return p;
59 }
60
61 int main(void) {
62 int i, j, k, l;
63 double complex n, d, q;
64
65 printf("// skip\n");
66 printf("// # generated by cmplxdivide.c\n");
67 printf("\n");
68 printf("package main\n");
69 printf("\n");
70 printf("import \"math\"\n");
71 printf("\n");
72 printf("var (\n");
73 printf("\tnan = math.NaN()\n");
74 printf("\tinf = math.Inf(1)\n");
75 printf("\tzero = 0.0\n");
76 printf(")\n");
77 printf("\n");
78 printf("var tests = []struct {\n");
79 printf("\tf, g complex128\n");
80 printf("\tout complex128\n");
81 printf("}{\n");
82
83 for(i=0; i<nelem(f); i++)
84 for(j=0; j<nelem(f); j++)
85 for(k=0; k<nelem(f); k++)
86 for(l=0; l<nelem(f); l++) {
87 n = f[i] + f[j]*I;
88 d = f[k] + f[l]*I;
89 q = n/d;
90
91 printf("\t{complex(%s, %s), complex(%s, %s), complex(%s, %s)},\n",
92 fmt(creal(n)), fmt(cimag(n)),
93 fmt(creal(d)), fmt(cimag(d)),
94 fmt(creal(q)), fmt(cimag(q)));
95 }
96 printf("}\n");
97 return 0;
98 }
99
View as plain text