// Copyright 2023 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build goexperiment.exectracer2 // Trace stack table and acquisition. package runtime import ( "internal/abi" "internal/goarch" "unsafe" ) const ( // Maximum number of PCs in a single stack trace. // Since events contain only stack id rather than whole stack trace, // we can allow quite large values here. traceStackSize = 128 // logicalStackSentinel is a sentinel value at pcBuf[0] signifying that // pcBuf[1:] holds a logical stack requiring no further processing. Any other // value at pcBuf[0] represents a skip value to apply to the physical stack in // pcBuf[1:] after inline expansion. logicalStackSentinel = ^uintptr(0) ) // traceStack captures a stack trace and registers it in the trace stack table. // It then returns its unique ID. // // skip controls the number of leaf frames to omit in order to hide tracer internals // from stack traces, see CL 5523. // // Avoid calling this function directly. gen needs to be the current generation // that this stack trace is being written out for, which needs to be synchronized with // generations moving forward. Prefer traceEventWriter.stack. func traceStack(skip int, mp *m, gen uintptr) uint64 { var pcBuf [traceStackSize]uintptr gp := getg() curgp := gp.m.curg nstk := 1 if tracefpunwindoff() || mp.hasCgoOnStack() { // Slow path: Unwind using default unwinder. Used when frame pointer // unwinding is unavailable or disabled (tracefpunwindoff), or might // produce incomplete results or crashes (hasCgoOnStack). Note that no // cgo callback related crashes have been observed yet. The main // motivation is to take advantage of a potentially registered cgo // symbolizer. pcBuf[0] = logicalStackSentinel if curgp == gp { nstk += callers(skip+1, pcBuf[1:]) } else if curgp != nil { nstk += gcallers(curgp, skip, pcBuf[1:]) } } else { // Fast path: Unwind using frame pointers. pcBuf[0] = uintptr(skip) if curgp == gp { nstk += fpTracebackPCs(unsafe.Pointer(getfp()), pcBuf[1:]) } else if curgp != nil { // We're called on the g0 stack through mcall(fn) or systemstack(fn). To // behave like gcallers above, we start unwinding from sched.bp, which // points to the caller frame of the leaf frame on g's stack. The return // address of the leaf frame is stored in sched.pc, which we manually // capture here. pcBuf[1] = curgp.sched.pc nstk += 1 + fpTracebackPCs(unsafe.Pointer(curgp.sched.bp), pcBuf[2:]) } } if nstk > 0 { nstk-- // skip runtime.goexit } if nstk > 0 && curgp.goid == 1 { nstk-- // skip runtime.main } id := trace.stackTab[gen%2].put(pcBuf[:nstk]) return id } // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids. // It is lock-free for reading. type traceStackTable struct { tab traceMap } // put returns a unique id for the stack trace pcs and caches it in the table, // if it sees the trace for the first time. func (t *traceStackTable) put(pcs []uintptr) uint64 { if len(pcs) == 0 { return 0 } id, _ := t.tab.put(noescape(unsafe.Pointer(&pcs[0])), uintptr(len(pcs))*unsafe.Sizeof(uintptr(0))) return id } // dump writes all previously cached stacks to trace buffers, // releases all memory and resets state. It must only be called once the caller // can guarantee that there are no more writers to the table. // // This must run on the system stack because it flushes buffers and thus // may acquire trace.lock. // //go:systemstack func (t *traceStackTable) dump(gen uintptr) { w := unsafeTraceWriter(gen, nil) // Iterate over the table. // // Do not acquire t.tab.lock. There's a conceptual lock cycle between acquiring this lock // here and allocation-related locks. Specifically, this lock may be acquired when an event // is emitted in allocation paths. Simultaneously, we might allocate here with the lock held, // creating a cycle. In practice, this cycle is never exercised. Because the table is only // dumped once there are no more writers, it's not possible for the cycle to occur. However // the lockrank mode is not sophisticated enough to identify this, and if it's not possible // for that cycle to happen, then it's also not possible for this to race with writers to // the table. for i := range t.tab.tab { stk := t.tab.bucket(i) for ; stk != nil; stk = stk.next() { stack := unsafe.Slice((*uintptr)(unsafe.Pointer(&stk.data[0])), uintptr(len(stk.data))/unsafe.Sizeof(uintptr(0))) // N.B. This might allocate, but that's OK because we're not writing to the M's buffer, // but one we're about to create (with ensure). frames := makeTraceFrames(gen, fpunwindExpand(stack)) // Returns the maximum number of bytes required to hold the encoded stack, given that // it contains N frames. maxBytes := 1 + (2+4*len(frames))*traceBytesPerNumber // Estimate the size of this record. This // bound is pretty loose, but avoids counting // lots of varint sizes. // // Add 1 because we might also write traceEvStacks. var flushed bool w, flushed = w.ensure(1 + maxBytes) if flushed { w.byte(byte(traceEvStacks)) } // Emit stack event. w.byte(byte(traceEvStack)) w.varint(uint64(stk.id)) w.varint(uint64(len(frames))) for _, frame := range frames { w.varint(uint64(frame.PC)) w.varint(frame.funcID) w.varint(frame.fileID) w.varint(frame.line) } } } // Still, hold the lock over reset. The callee expects it, even though it's // not strictly necessary. lock(&t.tab.lock) t.tab.reset() unlock(&t.tab.lock) w.flush().end() } // makeTraceFrames returns the frames corresponding to pcs. It may // allocate and may emit trace events. func makeTraceFrames(gen uintptr, pcs []uintptr) []traceFrame { frames := make([]traceFrame, 0, len(pcs)) ci := CallersFrames(pcs) for { f, more := ci.Next() frames = append(frames, makeTraceFrame(gen, f)) if !more { return frames } } } type traceFrame struct { PC uintptr funcID uint64 fileID uint64 line uint64 } // makeTraceFrame sets up a traceFrame for a frame. func makeTraceFrame(gen uintptr, f Frame) traceFrame { var frame traceFrame frame.PC = f.PC fn := f.Function const maxLen = 1 << 10 if len(fn) > maxLen { fn = fn[len(fn)-maxLen:] } frame.funcID = trace.stringTab[gen%2].put(gen, fn) frame.line = uint64(f.Line) file := f.File if len(file) > maxLen { file = file[len(file)-maxLen:] } frame.fileID = trace.stringTab[gen%2].put(gen, file) return frame } // tracefpunwindoff returns true if frame pointer unwinding for the tracer is // disabled via GODEBUG or not supported by the architecture. func tracefpunwindoff() bool { return debug.tracefpunwindoff != 0 || (goarch.ArchFamily != goarch.AMD64 && goarch.ArchFamily != goarch.ARM64) } // fpTracebackPCs populates pcBuf with the return addresses for each frame and // returns the number of PCs written to pcBuf. The returned PCs correspond to // "physical frames" rather than "logical frames"; that is if A is inlined into // B, this will return a PC for only B. func fpTracebackPCs(fp unsafe.Pointer, pcBuf []uintptr) (i int) { for i = 0; i < len(pcBuf) && fp != nil; i++ { // return addr sits one word above the frame pointer pcBuf[i] = *(*uintptr)(unsafe.Pointer(uintptr(fp) + goarch.PtrSize)) // follow the frame pointer to the next one fp = unsafe.Pointer(*(*uintptr)(fp)) } return i } // fpunwindExpand checks if pcBuf contains logical frames (which include inlined // frames) or physical frames (produced by frame pointer unwinding) using a // sentinel value in pcBuf[0]. Logical frames are simply returned without the // sentinel. Physical frames are turned into logical frames via inline unwinding // and by applying the skip value that's stored in pcBuf[0]. func fpunwindExpand(pcBuf []uintptr) []uintptr { if len(pcBuf) > 0 && pcBuf[0] == logicalStackSentinel { // pcBuf contains logical rather than inlined frames, skip has already been // applied, just return it without the sentinel value in pcBuf[0]. return pcBuf[1:] } var ( lastFuncID = abi.FuncIDNormal newPCBuf = make([]uintptr, 0, traceStackSize) skip = pcBuf[0] // skipOrAdd skips or appends retPC to newPCBuf and returns true if more // pcs can be added. skipOrAdd = func(retPC uintptr) bool { if skip > 0 { skip-- } else { newPCBuf = append(newPCBuf, retPC) } return len(newPCBuf) < cap(newPCBuf) } ) outer: for _, retPC := range pcBuf[1:] { callPC := retPC - 1 fi := findfunc(callPC) if !fi.valid() { // There is no funcInfo if callPC belongs to a C function. In this case // we still keep the pc, but don't attempt to expand inlined frames. if more := skipOrAdd(retPC); !more { break outer } continue } u, uf := newInlineUnwinder(fi, callPC) for ; uf.valid(); uf = u.next(uf) { sf := u.srcFunc(uf) if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(lastFuncID) { // ignore wrappers } else if more := skipOrAdd(uf.pc + 1); !more { break outer } lastFuncID = sf.funcID } } return newPCBuf } // startPCForTrace returns the start PC of a goroutine for tracing purposes. // If pc is a wrapper, it returns the PC of the wrapped function. Otherwise it // returns pc. func startPCForTrace(pc uintptr) uintptr { f := findfunc(pc) if !f.valid() { return pc // may happen for locked g in extra M since its pc is 0. } w := funcdata(f, abi.FUNCDATA_WrapInfo) if w == nil { return pc // not a wrapper } return f.datap.textAddr(*(*uint32)(w)) }