// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Semaphore implementation exposed to Go. // Intended use is provide a sleep and wakeup // primitive that can be used in the contended case // of other synchronization primitives. // Thus it targets the same goal as Linux's futex, // but it has much simpler semantics. // // That is, don't think of these as semaphores. // Think of them as a way to implement sleep and wakeup // such that every sleep is paired with a single wakeup, // even if, due to races, the wakeup happens before the sleep. // // See Mullender and Cox, ``Semaphores in Plan 9,'' // https://swtch.com/semaphore.pdf package runtime import ( "internal/cpu" "runtime/internal/atomic" "unsafe" ) // Asynchronous semaphore for sync.Mutex. // A semaRoot holds a balanced tree of sudog with distinct addresses (s.elem). // Each of those sudog may in turn point (through s.waitlink) to a list // of other sudogs waiting on the same address. // The operations on the inner lists of sudogs with the same address // are all O(1). The scanning of the top-level semaRoot list is O(log n), // where n is the number of distinct addresses with goroutines blocked // on them that hash to the given semaRoot. // See golang.org/issue/17953 for a program that worked badly // before we introduced the second level of list, and // BenchmarkSemTable/OneAddrCollision/* for a benchmark that exercises this. type semaRoot struct { lock mutex treap *sudog // root of balanced tree of unique waiters. nwait atomic.Uint32 // Number of waiters. Read w/o the lock. } var semtable semTable // Prime to not correlate with any user patterns. const semTabSize = 251 type semTable [semTabSize]struct { root semaRoot pad [cpu.CacheLinePadSize - unsafe.Sizeof(semaRoot{})]byte } func (t *semTable) rootFor(addr *uint32) *semaRoot { return &t[(uintptr(unsafe.Pointer(addr))>>3)%semTabSize].root } //go:linkname sync_runtime_Semacquire sync.runtime_Semacquire func sync_runtime_Semacquire(addr *uint32) { semacquire1(addr, false, semaBlockProfile, 0, waitReasonSemacquire) } //go:linkname poll_runtime_Semacquire internal/poll.runtime_Semacquire func poll_runtime_Semacquire(addr *uint32) { semacquire1(addr, false, semaBlockProfile, 0, waitReasonSemacquire) } //go:linkname sync_runtime_Semrelease sync.runtime_Semrelease func sync_runtime_Semrelease(addr *uint32, handoff bool, skipframes int) { semrelease1(addr, handoff, skipframes) } //go:linkname sync_runtime_SemacquireMutex sync.runtime_SemacquireMutex func sync_runtime_SemacquireMutex(addr *uint32, lifo bool, skipframes int) { semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes, waitReasonSyncMutexLock) } //go:linkname sync_runtime_SemacquireRWMutexR sync.runtime_SemacquireRWMutexR func sync_runtime_SemacquireRWMutexR(addr *uint32, lifo bool, skipframes int) { semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes, waitReasonSyncRWMutexRLock) } //go:linkname sync_runtime_SemacquireRWMutex sync.runtime_SemacquireRWMutex func sync_runtime_SemacquireRWMutex(addr *uint32, lifo bool, skipframes int) { semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes, waitReasonSyncRWMutexLock) } //go:linkname poll_runtime_Semrelease internal/poll.runtime_Semrelease func poll_runtime_Semrelease(addr *uint32) { semrelease(addr) } func readyWithTime(s *sudog, traceskip int) { if s.releasetime != 0 { s.releasetime = cputicks() } goready(s.g, traceskip) } type semaProfileFlags int const ( semaBlockProfile semaProfileFlags = 1 << iota semaMutexProfile ) // Called from runtime. func semacquire(addr *uint32) { semacquire1(addr, false, 0, 0, waitReasonSemacquire) } func semacquire1(addr *uint32, lifo bool, profile semaProfileFlags, skipframes int, reason waitReason) { gp := getg() if gp != gp.m.curg { throw("semacquire not on the G stack") } // Easy case. if cansemacquire(addr) { return } // Harder case: // increment waiter count // try cansemacquire one more time, return if succeeded // enqueue itself as a waiter // sleep // (waiter descriptor is dequeued by signaler) s := acquireSudog() root := semtable.rootFor(addr) t0 := int64(0) s.releasetime = 0 s.acquiretime = 0 s.ticket = 0 if profile&semaBlockProfile != 0 && blockprofilerate > 0 { t0 = cputicks() s.releasetime = -1 } if profile&semaMutexProfile != 0 && mutexprofilerate > 0 { if t0 == 0 { t0 = cputicks() } s.acquiretime = t0 } for { lockWithRank(&root.lock, lockRankRoot) // Add ourselves to nwait to disable "easy case" in semrelease. root.nwait.Add(1) // Check cansemacquire to avoid missed wakeup. if cansemacquire(addr) { root.nwait.Add(-1) unlock(&root.lock) break } // Any semrelease after the cansemacquire knows we're waiting // (we set nwait above), so go to sleep. root.queue(addr, s, lifo) goparkunlock(&root.lock, reason, traceBlockSync, 4+skipframes) if s.ticket != 0 || cansemacquire(addr) { break } } if s.releasetime > 0 { blockevent(s.releasetime-t0, 3+skipframes) } releaseSudog(s) } func semrelease(addr *uint32) { semrelease1(addr, false, 0) } func semrelease1(addr *uint32, handoff bool, skipframes int) { root := semtable.rootFor(addr) atomic.Xadd(addr, 1) // Easy case: no waiters? // This check must happen after the xadd, to avoid a missed wakeup // (see loop in semacquire). if root.nwait.Load() == 0 { return } // Harder case: search for a waiter and wake it. lockWithRank(&root.lock, lockRankRoot) if root.nwait.Load() == 0 { // The count is already consumed by another goroutine, // so no need to wake up another goroutine. unlock(&root.lock) return } s, t0, tailtime := root.dequeue(addr) if s != nil { root.nwait.Add(-1) } unlock(&root.lock) if s != nil { // May be slow or even yield, so unlock first acquiretime := s.acquiretime if acquiretime != 0 { // Charge contention that this (delayed) unlock caused. // If there are N more goroutines waiting beyond the // one that's waking up, charge their delay as well, so that // contention holding up many goroutines shows up as // more costly than contention holding up a single goroutine. // It would take O(N) time to calculate how long each goroutine // has been waiting, so instead we charge avg(head-wait, tail-wait)*N. // head-wait is the longest wait and tail-wait is the shortest. // (When we do a lifo insertion, we preserve this property by // copying the old head's acquiretime into the inserted new head. // In that case the overall average may be slightly high, but that's fine: // the average of the ends is only an approximation to the actual // average anyway.) // The root.dequeue above changed the head and tail acquiretime // to the current time, so the next unlock will not re-count this contention. dt0 := t0 - acquiretime dt := dt0 if s.waiters != 0 { dtail := t0 - tailtime dt += (dtail + dt0) / 2 * int64(s.waiters) } mutexevent(dt, 3+skipframes) } if s.ticket != 0 { throw("corrupted semaphore ticket") } if handoff && cansemacquire(addr) { s.ticket = 1 } readyWithTime(s, 5+skipframes) if s.ticket == 1 && getg().m.locks == 0 { // Direct G handoff // readyWithTime has added the waiter G as runnext in the // current P; we now call the scheduler so that we start running // the waiter G immediately. // Note that waiter inherits our time slice: this is desirable // to avoid having a highly contended semaphore hog the P // indefinitely. goyield is like Gosched, but it emits a // "preempted" trace event instead and, more importantly, puts // the current G on the local runq instead of the global one. // We only do this in the starving regime (handoff=true), as in // the non-starving case it is possible for a different waiter // to acquire the semaphore while we are yielding/scheduling, // and this would be wasteful. We wait instead to enter starving // regime, and then we start to do direct handoffs of ticket and // P. // See issue 33747 for discussion. goyield() } } } func cansemacquire(addr *uint32) bool { for { v := atomic.Load(addr) if v == 0 { return false } if atomic.Cas(addr, v, v-1) { return true } } } // queue adds s to the blocked goroutines in semaRoot. func (root *semaRoot) queue(addr *uint32, s *sudog, lifo bool) { s.g = getg() s.elem = unsafe.Pointer(addr) s.next = nil s.prev = nil s.waiters = 0 var last *sudog pt := &root.treap for t := *pt; t != nil; t = *pt { if t.elem == unsafe.Pointer(addr) { // Already have addr in list. if lifo { // Substitute s in t's place in treap. *pt = s s.ticket = t.ticket s.acquiretime = t.acquiretime // preserve head acquiretime as oldest time s.parent = t.parent s.prev = t.prev s.next = t.next if s.prev != nil { s.prev.parent = s } if s.next != nil { s.next.parent = s } // Add t first in s's wait list. s.waitlink = t s.waittail = t.waittail if s.waittail == nil { s.waittail = t } s.waiters = t.waiters if s.waiters+1 != 0 { s.waiters++ } t.parent = nil t.prev = nil t.next = nil t.waittail = nil } else { // Add s to end of t's wait list. if t.waittail == nil { t.waitlink = s } else { t.waittail.waitlink = s } t.waittail = s s.waitlink = nil if t.waiters+1 != 0 { t.waiters++ } } return } last = t if uintptr(unsafe.Pointer(addr)) < uintptr(t.elem) { pt = &t.prev } else { pt = &t.next } } // Add s as new leaf in tree of unique addrs. // The balanced tree is a treap using ticket as the random heap priority. // That is, it is a binary tree ordered according to the elem addresses, // but then among the space of possible binary trees respecting those // addresses, it is kept balanced on average by maintaining a heap ordering // on the ticket: s.ticket <= both s.prev.ticket and s.next.ticket. // https://en.wikipedia.org/wiki/Treap // https://faculty.washington.edu/aragon/pubs/rst89.pdf // // s.ticket compared with zero in couple of places, therefore set lowest bit. // It will not affect treap's quality noticeably. s.ticket = cheaprand() | 1 s.parent = last *pt = s // Rotate up into tree according to ticket (priority). for s.parent != nil && s.parent.ticket > s.ticket { if s.parent.prev == s { root.rotateRight(s.parent) } else { if s.parent.next != s { panic("semaRoot queue") } root.rotateLeft(s.parent) } } } // dequeue searches for and finds the first goroutine // in semaRoot blocked on addr. // If the sudog was being profiled, dequeue returns the time // at which it was woken up as now. Otherwise now is 0. // If there are additional entries in the wait list, dequeue // returns tailtime set to the last entry's acquiretime. // Otherwise tailtime is found.acquiretime. func (root *semaRoot) dequeue(addr *uint32) (found *sudog, now, tailtime int64) { ps := &root.treap s := *ps for ; s != nil; s = *ps { if s.elem == unsafe.Pointer(addr) { goto Found } if uintptr(unsafe.Pointer(addr)) < uintptr(s.elem) { ps = &s.prev } else { ps = &s.next } } return nil, 0, 0 Found: now = int64(0) if s.acquiretime != 0 { now = cputicks() } if t := s.waitlink; t != nil { // Substitute t, also waiting on addr, for s in root tree of unique addrs. *ps = t t.ticket = s.ticket t.parent = s.parent t.prev = s.prev if t.prev != nil { t.prev.parent = t } t.next = s.next if t.next != nil { t.next.parent = t } if t.waitlink != nil { t.waittail = s.waittail } else { t.waittail = nil } t.waiters = s.waiters if t.waiters > 1 { t.waiters-- } // Set head and tail acquire time to 'now', // because the caller will take care of charging // the delays before now for all entries in the list. t.acquiretime = now tailtime = s.waittail.acquiretime s.waittail.acquiretime = now s.waitlink = nil s.waittail = nil } else { // Rotate s down to be leaf of tree for removal, respecting priorities. for s.next != nil || s.prev != nil { if s.next == nil || s.prev != nil && s.prev.ticket < s.next.ticket { root.rotateRight(s) } else { root.rotateLeft(s) } } // Remove s, now a leaf. if s.parent != nil { if s.parent.prev == s { s.parent.prev = nil } else { s.parent.next = nil } } else { root.treap = nil } tailtime = s.acquiretime } s.parent = nil s.elem = nil s.next = nil s.prev = nil s.ticket = 0 return s, now, tailtime } // rotateLeft rotates the tree rooted at node x. // turning (x a (y b c)) into (y (x a b) c). func (root *semaRoot) rotateLeft(x *sudog) { // p -> (x a (y b c)) p := x.parent y := x.next b := y.prev y.prev = x x.parent = y x.next = b if b != nil { b.parent = x } y.parent = p if p == nil { root.treap = y } else if p.prev == x { p.prev = y } else { if p.next != x { throw("semaRoot rotateLeft") } p.next = y } } // rotateRight rotates the tree rooted at node y. // turning (y (x a b) c) into (x a (y b c)). func (root *semaRoot) rotateRight(y *sudog) { // p -> (y (x a b) c) p := y.parent x := y.prev b := x.next x.next = y y.parent = x y.prev = b if b != nil { b.parent = y } x.parent = p if p == nil { root.treap = x } else if p.prev == y { p.prev = x } else { if p.next != y { throw("semaRoot rotateRight") } p.next = x } } // notifyList is a ticket-based notification list used to implement sync.Cond. // // It must be kept in sync with the sync package. type notifyList struct { // wait is the ticket number of the next waiter. It is atomically // incremented outside the lock. wait atomic.Uint32 // notify is the ticket number of the next waiter to be notified. It can // be read outside the lock, but is only written to with lock held. // // Both wait & notify can wrap around, and such cases will be correctly // handled as long as their "unwrapped" difference is bounded by 2^31. // For this not to be the case, we'd need to have 2^31+ goroutines // blocked on the same condvar, which is currently not possible. notify uint32 // List of parked waiters. lock mutex head *sudog tail *sudog } // less checks if a < b, considering a & b running counts that may overflow the // 32-bit range, and that their "unwrapped" difference is always less than 2^31. func less(a, b uint32) bool { return int32(a-b) < 0 } // notifyListAdd adds the caller to a notify list such that it can receive // notifications. The caller must eventually call notifyListWait to wait for // such a notification, passing the returned ticket number. // //go:linkname notifyListAdd sync.runtime_notifyListAdd func notifyListAdd(l *notifyList) uint32 { // This may be called concurrently, for example, when called from // sync.Cond.Wait while holding a RWMutex in read mode. return l.wait.Add(1) - 1 } // notifyListWait waits for a notification. If one has been sent since // notifyListAdd was called, it returns immediately. Otherwise, it blocks. // //go:linkname notifyListWait sync.runtime_notifyListWait func notifyListWait(l *notifyList, t uint32) { lockWithRank(&l.lock, lockRankNotifyList) // Return right away if this ticket has already been notified. if less(t, l.notify) { unlock(&l.lock) return } // Enqueue itself. s := acquireSudog() s.g = getg() s.ticket = t s.releasetime = 0 t0 := int64(0) if blockprofilerate > 0 { t0 = cputicks() s.releasetime = -1 } if l.tail == nil { l.head = s } else { l.tail.next = s } l.tail = s goparkunlock(&l.lock, waitReasonSyncCondWait, traceBlockCondWait, 3) if t0 != 0 { blockevent(s.releasetime-t0, 2) } releaseSudog(s) } // notifyListNotifyAll notifies all entries in the list. // //go:linkname notifyListNotifyAll sync.runtime_notifyListNotifyAll func notifyListNotifyAll(l *notifyList) { // Fast-path: if there are no new waiters since the last notification // we don't need to acquire the lock. if l.wait.Load() == atomic.Load(&l.notify) { return } // Pull the list out into a local variable, waiters will be readied // outside the lock. lockWithRank(&l.lock, lockRankNotifyList) s := l.head l.head = nil l.tail = nil // Update the next ticket to be notified. We can set it to the current // value of wait because any previous waiters are already in the list // or will notice that they have already been notified when trying to // add themselves to the list. atomic.Store(&l.notify, l.wait.Load()) unlock(&l.lock) // Go through the local list and ready all waiters. for s != nil { next := s.next s.next = nil readyWithTime(s, 4) s = next } } // notifyListNotifyOne notifies one entry in the list. // //go:linkname notifyListNotifyOne sync.runtime_notifyListNotifyOne func notifyListNotifyOne(l *notifyList) { // Fast-path: if there are no new waiters since the last notification // we don't need to acquire the lock at all. if l.wait.Load() == atomic.Load(&l.notify) { return } lockWithRank(&l.lock, lockRankNotifyList) // Re-check under the lock if we need to do anything. t := l.notify if t == l.wait.Load() { unlock(&l.lock) return } // Update the next notify ticket number. atomic.Store(&l.notify, t+1) // Try to find the g that needs to be notified. // If it hasn't made it to the list yet we won't find it, // but it won't park itself once it sees the new notify number. // // This scan looks linear but essentially always stops quickly. // Because g's queue separately from taking numbers, // there may be minor reorderings in the list, but we // expect the g we're looking for to be near the front. // The g has others in front of it on the list only to the // extent that it lost the race, so the iteration will not // be too long. This applies even when the g is missing: // it hasn't yet gotten to sleep and has lost the race to // the (few) other g's that we find on the list. for p, s := (*sudog)(nil), l.head; s != nil; p, s = s, s.next { if s.ticket == t { n := s.next if p != nil { p.next = n } else { l.head = n } if n == nil { l.tail = p } unlock(&l.lock) s.next = nil readyWithTime(s, 4) return } } unlock(&l.lock) } //go:linkname notifyListCheck sync.runtime_notifyListCheck func notifyListCheck(sz uintptr) { if sz != unsafe.Sizeof(notifyList{}) { print("runtime: bad notifyList size - sync=", sz, " runtime=", unsafe.Sizeof(notifyList{}), "\n") throw("bad notifyList size") } } //go:linkname sync_nanotime sync.runtime_nanotime func sync_nanotime() int64 { return nanotime() }