// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build !goexperiment.swissmap

package runtime

// This file contains the implementation of Go's map type.
//
// A map is just a hash table. The data is arranged
// into an array of buckets. Each bucket contains up to
// 8 key/elem pairs. The low-order bits of the hash are
// used to select a bucket. Each bucket contains a few
// high-order bits of each hash to distinguish the entries
// within a single bucket.
//
// If more than 8 keys hash to a bucket, we chain on
// extra buckets.
//
// When the hashtable grows, we allocate a new array
// of buckets twice as big. Buckets are incrementally
// copied from the old bucket array to the new bucket array.
//
// Map iterators walk through the array of buckets and
// return the keys in walk order (bucket #, then overflow
// chain order, then bucket index).  To maintain iteration
// semantics, we never move keys within their bucket (if
// we did, keys might be returned 0 or 2 times).  When
// growing the table, iterators remain iterating through the
// old table and must check the new table if the bucket
// they are iterating through has been moved ("evacuated")
// to the new table.

// Picking loadFactor: too large and we have lots of overflow
// buckets, too small and we waste a lot of space. I wrote
// a simple program to check some stats for different loads:
// (64-bit, 8 byte keys and elems)
//  loadFactor    %overflow  bytes/entry     hitprobe    missprobe
//        4.00         2.13        20.77         3.00         4.00
//        4.50         4.05        17.30         3.25         4.50
//        5.00         6.85        14.77         3.50         5.00
//        5.50        10.55        12.94         3.75         5.50
//        6.00        15.27        11.67         4.00         6.00
//        6.50        20.90        10.79         4.25         6.50
//        7.00        27.14        10.15         4.50         7.00
//        7.50        34.03         9.73         4.75         7.50
//        8.00        41.10         9.40         5.00         8.00
//
// %overflow   = percentage of buckets which have an overflow bucket
// bytes/entry = overhead bytes used per key/elem pair
// hitprobe    = # of entries to check when looking up a present key
// missprobe   = # of entries to check when looking up an absent key
//
// Keep in mind this data is for maximally loaded tables, i.e. just
// before the table grows. Typical tables will be somewhat less loaded.

import (
	"internal/abi"
	"internal/goarch"
	"internal/runtime/atomic"
	"internal/runtime/math"
	"internal/runtime/sys"
	"unsafe"
)

type maptype = abi.OldMapType

const (
	// Maximum number of key/elem pairs a bucket can hold.
	bucketCntBits = abi.OldMapBucketCountBits

	// Maximum average load of a bucket that triggers growth is bucketCnt*13/16 (about 80% full)
	// Because of minimum alignment rules, bucketCnt is known to be at least 8.
	// Represent as loadFactorNum/loadFactorDen, to allow integer math.
	loadFactorDen = 2
	loadFactorNum = loadFactorDen * abi.OldMapBucketCount * 13 / 16

	// data offset should be the size of the bmap struct, but needs to be
	// aligned correctly. For amd64p32 this means 64-bit alignment
	// even though pointers are 32 bit.
	dataOffset = unsafe.Offsetof(struct {
		b bmap
		v int64
	}{}.v)

	// Possible tophash values. We reserve a few possibilities for special marks.
	// Each bucket (including its overflow buckets, if any) will have either all or none of its
	// entries in the evacuated* states (except during the evacuate() method, which only happens
	// during map writes and thus no one else can observe the map during that time).
	emptyRest      = 0 // this cell is empty, and there are no more non-empty cells at higher indexes or overflows.
	emptyOne       = 1 // this cell is empty
	evacuatedX     = 2 // key/elem is valid.  Entry has been evacuated to first half of larger table.
	evacuatedY     = 3 // same as above, but evacuated to second half of larger table.
	evacuatedEmpty = 4 // cell is empty, bucket is evacuated.
	minTopHash     = 5 // minimum tophash for a normal filled cell.

	// flags
	iterator     = 1 // there may be an iterator using buckets
	oldIterator  = 2 // there may be an iterator using oldbuckets
	hashWriting  = 4 // a goroutine is writing to the map
	sameSizeGrow = 8 // the current map growth is to a new map of the same size

	// sentinel bucket ID for iterator checks
	noCheck = 1<<(8*goarch.PtrSize) - 1
)

// isEmpty reports whether the given tophash array entry represents an empty bucket entry.
func isEmpty(x uint8) bool {
	return x <= emptyOne
}

// A header for a Go map.
type hmap struct {
	// Note: the format of the hmap is also encoded in cmd/compile/internal/reflectdata/reflect.go.
	// Make sure this stays in sync with the compiler's definition.
	count     int // # live cells == size of map.  Must be first (used by len() builtin)
	flags     uint8
	B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
	noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
	hash0     uint32 // hash seed

	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)
	clearSeq   uint64

	extra *mapextra // optional fields
}

// mapextra holds fields that are not present on all maps.
type mapextra struct {
	// If both key and elem do not contain pointers and are inline, then we mark bucket
	// type as containing no pointers. This avoids scanning such maps.
	// However, bmap.overflow is a pointer. In order to keep overflow buckets
	// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
	// overflow and oldoverflow are only used if key and elem do not contain pointers.
	// overflow contains overflow buckets for hmap.buckets.
	// oldoverflow contains overflow buckets for hmap.oldbuckets.
	// The indirection allows to store a pointer to the slice in hiter.
	overflow    *[]*bmap
	oldoverflow *[]*bmap

	// nextOverflow holds a pointer to a free overflow bucket.
	nextOverflow *bmap
}

// A bucket for a Go map.
type bmap struct {
	// tophash generally contains the top byte of the hash value
	// for each key in this bucket. If tophash[0] < minTopHash,
	// tophash[0] is a bucket evacuation state instead.
	tophash [abi.OldMapBucketCount]uint8
	// Followed by bucketCnt keys and then bucketCnt elems.
	// NOTE: packing all the keys together and then all the elems together makes the
	// code a bit more complicated than alternating key/elem/key/elem/... but it allows
	// us to eliminate padding which would be needed for, e.g., map[int64]int8.
	// Followed by an overflow pointer.
}

// A hash iteration structure.
// If you modify hiter, also change cmd/compile/internal/reflectdata/reflect.go
// and reflect/value.go to match the layout of this structure.
type hiter struct {
	key         unsafe.Pointer // Must be in first position.  Write nil to indicate iteration end (see cmd/compile/internal/walk/range.go).
	elem        unsafe.Pointer // Must be in second position (see cmd/compile/internal/walk/range.go).
	t           *maptype
	h           *hmap
	buckets     unsafe.Pointer // bucket ptr at hash_iter initialization time
	bptr        *bmap          // current bucket
	overflow    *[]*bmap       // keeps overflow buckets of hmap.buckets alive
	oldoverflow *[]*bmap       // keeps overflow buckets of hmap.oldbuckets alive
	startBucket uintptr        // bucket iteration started at
	offset      uint8          // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
	wrapped     bool           // already wrapped around from end of bucket array to beginning
	B           uint8
	i           uint8
	bucket      uintptr
	checkBucket uintptr
	clearSeq    uint64
}

// bucketShift returns 1<<b, optimized for code generation.
func bucketShift(b uint8) uintptr {
	// Masking the shift amount allows overflow checks to be elided.
	return uintptr(1) << (b & (goarch.PtrSize*8 - 1))
}

// bucketMask returns 1<<b - 1, optimized for code generation.
func bucketMask(b uint8) uintptr {
	return bucketShift(b) - 1
}

// tophash calculates the tophash value for hash.
func tophash(hash uintptr) uint8 {
	top := uint8(hash >> (goarch.PtrSize*8 - 8))
	if top < minTopHash {
		top += minTopHash
	}
	return top
}

func evacuated(b *bmap) bool {
	h := b.tophash[0]
	return h > emptyOne && h < minTopHash
}

func (b *bmap) overflow(t *maptype) *bmap {
	return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.BucketSize)-goarch.PtrSize))
}

func (b *bmap) setoverflow(t *maptype, ovf *bmap) {
	*(**bmap)(add(unsafe.Pointer(b), uintptr(t.BucketSize)-goarch.PtrSize)) = ovf
}

func (b *bmap) keys() unsafe.Pointer {
	return add(unsafe.Pointer(b), dataOffset)
}

// incrnoverflow increments h.noverflow.
// noverflow counts the number of overflow buckets.
// This is used to trigger same-size map growth.
// See also tooManyOverflowBuckets.
// To keep hmap small, noverflow is a uint16.
// When there are few buckets, noverflow is an exact count.
// When there are many buckets, noverflow is an approximate count.
func (h *hmap) incrnoverflow() {
	// We trigger same-size map growth if there are
	// as many overflow buckets as buckets.
	// We need to be able to count to 1<<h.B.
	if h.B < 16 {
		h.noverflow++
		return
	}
	// Increment with probability 1/(1<<(h.B-15)).
	// When we reach 1<<15 - 1, we will have approximately
	// as many overflow buckets as buckets.
	mask := uint32(1)<<(h.B-15) - 1
	// Example: if h.B == 18, then mask == 7,
	// and rand() & 7 == 0 with probability 1/8.
	if uint32(rand())&mask == 0 {
		h.noverflow++
	}
}

func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap {
	var ovf *bmap
	if h.extra != nil && h.extra.nextOverflow != nil {
		// We have preallocated overflow buckets available.
		// See makeBucketArray for more details.
		ovf = h.extra.nextOverflow
		if ovf.overflow(t) == nil {
			// We're not at the end of the preallocated overflow buckets. Bump the pointer.
			h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.BucketSize)))
		} else {
			// This is the last preallocated overflow bucket.
			// Reset the overflow pointer on this bucket,
			// which was set to a non-nil sentinel value.
			ovf.setoverflow(t, nil)
			h.extra.nextOverflow = nil
		}
	} else {
		ovf = (*bmap)(newobject(t.Bucket))
	}
	h.incrnoverflow()
	if !t.Bucket.Pointers() {
		h.createOverflow()
		*h.extra.overflow = append(*h.extra.overflow, ovf)
	}
	b.setoverflow(t, ovf)
	return ovf
}

func (h *hmap) createOverflow() {
	if h.extra == nil {
		h.extra = new(mapextra)
	}
	if h.extra.overflow == nil {
		h.extra.overflow = new([]*bmap)
	}
}

func makemap64(t *maptype, hint int64, h *hmap) *hmap {
	if int64(int(hint)) != hint {
		hint = 0
	}
	return makemap(t, int(hint), h)
}

// makemap_small implements Go map creation for make(map[k]v) and
// make(map[k]v, hint) when hint is known to be at most bucketCnt
// at compile time and the map needs to be allocated on the heap.
//
// makemap_small should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/bytedance/sonic
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname makemap_small
func makemap_small() *hmap {
	h := new(hmap)
	h.hash0 = uint32(rand())
	return h
}

// makemap implements Go map creation for make(map[k]v, hint).
// If the compiler has determined that the map or the first bucket
// can be created on the stack, h and/or bucket may be non-nil.
// If h != nil, the map can be created directly in h.
// If h.buckets != nil, bucket pointed to can be used as the first bucket.
//
// makemap should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/ugorji/go/codec
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname makemap
func makemap(t *maptype, hint int, h *hmap) *hmap {
	mem, overflow := math.MulUintptr(uintptr(hint), t.Bucket.Size_)
	if overflow || mem > maxAlloc {
		hint = 0
	}

	// initialize Hmap
	if h == nil {
		h = new(hmap)
	}
	h.hash0 = uint32(rand())

	// Find the size parameter B which will hold the requested # of elements.
	// For hint < 0 overLoadFactor returns false since hint < bucketCnt.
	B := uint8(0)
	for overLoadFactor(hint, B) {
		B++
	}
	h.B = B

	// allocate initial hash table
	// if B == 0, the buckets field is allocated lazily later (in mapassign)
	// If hint is large zeroing this memory could take a while.
	if h.B != 0 {
		var nextOverflow *bmap
		h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
		if nextOverflow != nil {
			h.extra = new(mapextra)
			h.extra.nextOverflow = nextOverflow
		}
	}

	return h
}

// makeBucketArray initializes a backing array for map buckets.
// 1<<b is the minimum number of buckets to allocate.
// dirtyalloc should either be nil or a bucket array previously
// allocated by makeBucketArray with the same t and b parameters.
// If dirtyalloc is nil a new backing array will be alloced and
// otherwise dirtyalloc will be cleared and reused as backing array.
func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
	base := bucketShift(b)
	nbuckets := base
	// For small b, overflow buckets are unlikely.
	// Avoid the overhead of the calculation.
	if b >= 4 {
		// Add on the estimated number of overflow buckets
		// required to insert the median number of elements
		// used with this value of b.
		nbuckets += bucketShift(b - 4)
		sz := t.Bucket.Size_ * nbuckets
		up := roundupsize(sz, !t.Bucket.Pointers())
		if up != sz {
			nbuckets = up / t.Bucket.Size_
		}
	}

	if dirtyalloc == nil {
		buckets = newarray(t.Bucket, int(nbuckets))
	} else {
		// dirtyalloc was previously generated by
		// the above newarray(t.Bucket, int(nbuckets))
		// but may not be empty.
		buckets = dirtyalloc
		size := t.Bucket.Size_ * nbuckets
		if t.Bucket.Pointers() {
			memclrHasPointers(buckets, size)
		} else {
			memclrNoHeapPointers(buckets, size)
		}
	}

	if base != nbuckets {
		// We preallocated some overflow buckets.
		// To keep the overhead of tracking these overflow buckets to a minimum,
		// we use the convention that if a preallocated overflow bucket's overflow
		// pointer is nil, then there are more available by bumping the pointer.
		// We need a safe non-nil pointer for the last overflow bucket; just use buckets.
		nextOverflow = (*bmap)(add(buckets, base*uintptr(t.BucketSize)))
		last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.BucketSize)))
		last.setoverflow(t, (*bmap)(buckets))
	}
	return buckets, nextOverflow
}

// mapaccess1 returns a pointer to h[key].  Never returns nil, instead
// it will return a reference to the zero object for the elem type if
// the key is not in the map.
// NOTE: The returned pointer may keep the whole map live, so don't
// hold onto it for very long.
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	if raceenabled && h != nil {
		callerpc := sys.GetCallerPC()
		pc := abi.FuncPCABIInternal(mapaccess1)
		racereadpc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.Key, key, callerpc, pc)
	}
	if msanenabled && h != nil {
		msanread(key, t.Key.Size_)
	}
	if asanenabled && h != nil {
		asanread(key, t.Key.Size_)
	}
	if h == nil || h.count == 0 {
		if err := mapKeyError(t, key); err != nil {
			panic(err) // see issue 23734
		}
		return unsafe.Pointer(&zeroVal[0])
	}
	if h.flags&hashWriting != 0 {
		fatal("concurrent map read and map write")
	}
	hash := t.Hasher(key, uintptr(h.hash0))
	m := bucketMask(h.B)
	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.BucketSize)))
	if c := h.oldbuckets; c != nil {
		if !h.sameSizeGrow() {
			// There used to be half as many buckets; mask down one more power of two.
			m >>= 1
		}
		oldb := (*bmap)(add(c, (hash&m)*uintptr(t.BucketSize)))
		if !evacuated(oldb) {
			b = oldb
		}
	}
	top := tophash(hash)
bucketloop:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
			if t.IndirectKey() {
				k = *((*unsafe.Pointer)(k))
			}
			if t.Key.Equal(key, k) {
				e := add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
				if t.IndirectElem() {
					e = *((*unsafe.Pointer)(e))
				}
				return e
			}
		}
	}
	return unsafe.Pointer(&zeroVal[0])
}

// mapaccess2 should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/ugorji/go/codec
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname mapaccess2
func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
	if raceenabled && h != nil {
		callerpc := sys.GetCallerPC()
		pc := abi.FuncPCABIInternal(mapaccess2)
		racereadpc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.Key, key, callerpc, pc)
	}
	if msanenabled && h != nil {
		msanread(key, t.Key.Size_)
	}
	if asanenabled && h != nil {
		asanread(key, t.Key.Size_)
	}
	if h == nil || h.count == 0 {
		if err := mapKeyError(t, key); err != nil {
			panic(err) // see issue 23734
		}
		return unsafe.Pointer(&zeroVal[0]), false
	}
	if h.flags&hashWriting != 0 {
		fatal("concurrent map read and map write")
	}
	hash := t.Hasher(key, uintptr(h.hash0))
	m := bucketMask(h.B)
	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.BucketSize)))
	if c := h.oldbuckets; c != nil {
		if !h.sameSizeGrow() {
			// There used to be half as many buckets; mask down one more power of two.
			m >>= 1
		}
		oldb := (*bmap)(add(c, (hash&m)*uintptr(t.BucketSize)))
		if !evacuated(oldb) {
			b = oldb
		}
	}
	top := tophash(hash)
bucketloop:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
			if t.IndirectKey() {
				k = *((*unsafe.Pointer)(k))
			}
			if t.Key.Equal(key, k) {
				e := add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
				if t.IndirectElem() {
					e = *((*unsafe.Pointer)(e))
				}
				return e, true
			}
		}
	}
	return unsafe.Pointer(&zeroVal[0]), false
}

// returns both key and elem. Used by map iterator.
func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
	if h == nil || h.count == 0 {
		return nil, nil
	}
	hash := t.Hasher(key, uintptr(h.hash0))
	m := bucketMask(h.B)
	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.BucketSize)))
	if c := h.oldbuckets; c != nil {
		if !h.sameSizeGrow() {
			// There used to be half as many buckets; mask down one more power of two.
			m >>= 1
		}
		oldb := (*bmap)(add(c, (hash&m)*uintptr(t.BucketSize)))
		if !evacuated(oldb) {
			b = oldb
		}
	}
	top := tophash(hash)
bucketloop:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
			if t.IndirectKey() {
				k = *((*unsafe.Pointer)(k))
			}
			if t.Key.Equal(key, k) {
				e := add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
				if t.IndirectElem() {
					e = *((*unsafe.Pointer)(e))
				}
				return k, e
			}
		}
	}
	return nil, nil
}

func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
	e := mapaccess1(t, h, key)
	if e == unsafe.Pointer(&zeroVal[0]) {
		return zero
	}
	return e
}

func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) {
	e := mapaccess1(t, h, key)
	if e == unsafe.Pointer(&zeroVal[0]) {
		return zero, false
	}
	return e, true
}

// Like mapaccess, but allocates a slot for the key if it is not present in the map.
//
// mapassign should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/bytedance/sonic
//   - github.com/RomiChan/protobuf
//   - github.com/segmentio/encoding
//   - github.com/ugorji/go/codec
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname mapassign
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	if h == nil {
		panic(plainError("assignment to entry in nil map"))
	}
	if raceenabled {
		callerpc := sys.GetCallerPC()
		pc := abi.FuncPCABIInternal(mapassign)
		racewritepc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.Key, key, callerpc, pc)
	}
	if msanenabled {
		msanread(key, t.Key.Size_)
	}
	if asanenabled {
		asanread(key, t.Key.Size_)
	}
	if h.flags&hashWriting != 0 {
		fatal("concurrent map writes")
	}
	hash := t.Hasher(key, uintptr(h.hash0))

	// Set hashWriting after calling t.hasher, since t.hasher may panic,
	// in which case we have not actually done a write.
	h.flags ^= hashWriting

	if h.buckets == nil {
		h.buckets = newobject(t.Bucket) // newarray(t.Bucket, 1)
	}

again:
	bucket := hash & bucketMask(h.B)
	if h.growing() {
		growWork(t, h, bucket)
	}
	b := (*bmap)(add(h.buckets, bucket*uintptr(t.BucketSize)))
	top := tophash(hash)

	var inserti *uint8
	var insertk unsafe.Pointer
	var elem unsafe.Pointer
bucketloop:
	for {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			if b.tophash[i] != top {
				if isEmpty(b.tophash[i]) && inserti == nil {
					inserti = &b.tophash[i]
					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
					elem = add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
				}
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
			if t.IndirectKey() {
				k = *((*unsafe.Pointer)(k))
			}
			if !t.Key.Equal(key, k) {
				continue
			}
			// already have a mapping for key. Update it.
			if t.NeedKeyUpdate() {
				typedmemmove(t.Key, k, key)
			}
			elem = add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
			goto done
		}
		ovf := b.overflow(t)
		if ovf == nil {
			break
		}
		b = ovf
	}

	// Did not find mapping for key. Allocate new cell & add entry.

	// If we hit the max load factor or we have too many overflow buckets,
	// and we're not already in the middle of growing, start growing.
	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
		hashGrow(t, h)
		goto again // Growing the table invalidates everything, so try again
	}

	if inserti == nil {
		// The current bucket and all the overflow buckets connected to it are full, allocate a new one.
		newb := h.newoverflow(t, b)
		inserti = &newb.tophash[0]
		insertk = add(unsafe.Pointer(newb), dataOffset)
		elem = add(insertk, abi.OldMapBucketCount*uintptr(t.KeySize))
	}

	// store new key/elem at insert position
	if t.IndirectKey() {
		kmem := newobject(t.Key)
		*(*unsafe.Pointer)(insertk) = kmem
		insertk = kmem
	}
	if t.IndirectElem() {
		vmem := newobject(t.Elem)
		*(*unsafe.Pointer)(elem) = vmem
	}
	typedmemmove(t.Key, insertk, key)
	*inserti = top
	h.count++

done:
	if h.flags&hashWriting == 0 {
		fatal("concurrent map writes")
	}
	h.flags &^= hashWriting
	if t.IndirectElem() {
		elem = *((*unsafe.Pointer)(elem))
	}
	return elem
}

// mapdelete should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/ugorji/go/codec
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname mapdelete
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
	if raceenabled && h != nil {
		callerpc := sys.GetCallerPC()
		pc := abi.FuncPCABIInternal(mapdelete)
		racewritepc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.Key, key, callerpc, pc)
	}
	if msanenabled && h != nil {
		msanread(key, t.Key.Size_)
	}
	if asanenabled && h != nil {
		asanread(key, t.Key.Size_)
	}
	if h == nil || h.count == 0 {
		if err := mapKeyError(t, key); err != nil {
			panic(err) // see issue 23734
		}
		return
	}
	if h.flags&hashWriting != 0 {
		fatal("concurrent map writes")
	}

	hash := t.Hasher(key, uintptr(h.hash0))

	// Set hashWriting after calling t.hasher, since t.hasher may panic,
	// in which case we have not actually done a write (delete).
	h.flags ^= hashWriting

	bucket := hash & bucketMask(h.B)
	if h.growing() {
		growWork(t, h, bucket)
	}
	b := (*bmap)(add(h.buckets, bucket*uintptr(t.BucketSize)))
	bOrig := b
	top := tophash(hash)
search:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break search
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
			k2 := k
			if t.IndirectKey() {
				k2 = *((*unsafe.Pointer)(k2))
			}
			if !t.Key.Equal(key, k2) {
				continue
			}
			// Only clear key if there are pointers in it.
			if t.IndirectKey() {
				*(*unsafe.Pointer)(k) = nil
			} else if t.Key.Pointers() {
				memclrHasPointers(k, t.Key.Size_)
			}
			e := add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
			if t.IndirectElem() {
				*(*unsafe.Pointer)(e) = nil
			} else if t.Elem.Pointers() {
				memclrHasPointers(e, t.Elem.Size_)
			} else {
				memclrNoHeapPointers(e, t.Elem.Size_)
			}
			b.tophash[i] = emptyOne
			// If the bucket now ends in a bunch of emptyOne states,
			// change those to emptyRest states.
			// It would be nice to make this a separate function, but
			// for loops are not currently inlineable.
			if i == abi.OldMapBucketCount-1 {
				if b.overflow(t) != nil && b.overflow(t).tophash[0] != emptyRest {
					goto notLast
				}
			} else {
				if b.tophash[i+1] != emptyRest {
					goto notLast
				}
			}
			for {
				b.tophash[i] = emptyRest
				if i == 0 {
					if b == bOrig {
						break // beginning of initial bucket, we're done.
					}
					// Find previous bucket, continue at its last entry.
					c := b
					for b = bOrig; b.overflow(t) != c; b = b.overflow(t) {
					}
					i = abi.OldMapBucketCount - 1
				} else {
					i--
				}
				if b.tophash[i] != emptyOne {
					break
				}
			}
		notLast:
			h.count--
			// Reset the hash seed to make it more difficult for attackers to
			// repeatedly trigger hash collisions. See issue 25237.
			if h.count == 0 {
				h.hash0 = uint32(rand())
			}
			break search
		}
	}

	if h.flags&hashWriting == 0 {
		fatal("concurrent map writes")
	}
	h.flags &^= hashWriting
}

// mapiterinit initializes the hiter struct used for ranging over maps.
// The hiter struct pointed to by 'it' is allocated on the stack
// by the compilers order pass or on the heap by reflect_mapiterinit.
// Both need to have zeroed hiter since the struct contains pointers.
//
// mapiterinit should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/bytedance/sonic
//   - github.com/goccy/go-json
//   - github.com/RomiChan/protobuf
//   - github.com/segmentio/encoding
//   - github.com/ugorji/go/codec
//   - github.com/wI2L/jettison
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname mapiterinit
func mapiterinit(t *maptype, h *hmap, it *hiter) {
	if raceenabled && h != nil {
		callerpc := sys.GetCallerPC()
		racereadpc(unsafe.Pointer(h), callerpc, abi.FuncPCABIInternal(mapiterinit))
	}

	it.t = t
	if h == nil || h.count == 0 {
		return
	}

	if unsafe.Sizeof(hiter{}) != 8+12*goarch.PtrSize {
		throw("hash_iter size incorrect") // see cmd/compile/internal/reflectdata/reflect.go
	}
	it.h = h
	it.clearSeq = h.clearSeq

	// grab snapshot of bucket state
	it.B = h.B
	it.buckets = h.buckets
	if !t.Bucket.Pointers() {
		// Allocate the current slice and remember pointers to both current and old.
		// This preserves all relevant overflow buckets alive even if
		// the table grows and/or overflow buckets are added to the table
		// while we are iterating.
		h.createOverflow()
		it.overflow = h.extra.overflow
		it.oldoverflow = h.extra.oldoverflow
	}

	// decide where to start
	r := uintptr(rand())
	it.startBucket = r & bucketMask(h.B)
	it.offset = uint8(r >> h.B & (abi.OldMapBucketCount - 1))

	// iterator state
	it.bucket = it.startBucket

	// Remember we have an iterator.
	// Can run concurrently with another mapiterinit().
	if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
		atomic.Or8(&h.flags, iterator|oldIterator)
	}

	mapiternext(it)
}

// mapiternext should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/bytedance/sonic
//   - github.com/RomiChan/protobuf
//   - github.com/segmentio/encoding
//   - github.com/ugorji/go/codec
//   - gonum.org/v1/gonum
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname mapiternext
func mapiternext(it *hiter) {
	h := it.h
	if raceenabled {
		callerpc := sys.GetCallerPC()
		racereadpc(unsafe.Pointer(h), callerpc, abi.FuncPCABIInternal(mapiternext))
	}
	if h.flags&hashWriting != 0 {
		fatal("concurrent map iteration and map write")
	}
	t := it.t
	bucket := it.bucket
	b := it.bptr
	i := it.i
	checkBucket := it.checkBucket

next:
	if b == nil {
		if bucket == it.startBucket && it.wrapped {
			// end of iteration
			it.key = nil
			it.elem = nil
			return
		}
		if h.growing() && it.B == h.B {
			// Iterator was started in the middle of a grow, and the grow isn't done yet.
			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
			// bucket hasn't been evacuated) then we need to iterate through the old
			// bucket and only return the ones that will be migrated to this bucket.
			oldbucket := bucket & it.h.oldbucketmask()
			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.BucketSize)))
			if !evacuated(b) {
				checkBucket = bucket
			} else {
				b = (*bmap)(add(it.buckets, bucket*uintptr(t.BucketSize)))
				checkBucket = noCheck
			}
		} else {
			b = (*bmap)(add(it.buckets, bucket*uintptr(t.BucketSize)))
			checkBucket = noCheck
		}
		bucket++
		if bucket == bucketShift(it.B) {
			bucket = 0
			it.wrapped = true
		}
		i = 0
	}
	for ; i < abi.OldMapBucketCount; i++ {
		offi := (i + it.offset) & (abi.OldMapBucketCount - 1)
		if isEmpty(b.tophash[offi]) || b.tophash[offi] == evacuatedEmpty {
			// TODO: emptyRest is hard to use here, as we start iterating
			// in the middle of a bucket. It's feasible, just tricky.
			continue
		}
		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.KeySize))
		if t.IndirectKey() {
			k = *((*unsafe.Pointer)(k))
		}
		e := add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+uintptr(offi)*uintptr(t.ValueSize))
		if checkBucket != noCheck && !h.sameSizeGrow() {
			// Special case: iterator was started during a grow to a larger size
			// and the grow is not done yet. We're working on a bucket whose
			// oldbucket has not been evacuated yet. Or at least, it wasn't
			// evacuated when we started the bucket. So we're iterating
			// through the oldbucket, skipping any keys that will go
			// to the other new bucket (each oldbucket expands to two
			// buckets during a grow).
			if t.ReflexiveKey() || t.Key.Equal(k, k) {
				// If the item in the oldbucket is not destined for
				// the current new bucket in the iteration, skip it.
				hash := t.Hasher(k, uintptr(h.hash0))
				if hash&bucketMask(it.B) != checkBucket {
					continue
				}
			} else {
				// Hash isn't repeatable if k != k (NaNs).  We need a
				// repeatable and randomish choice of which direction
				// to send NaNs during evacuation. We'll use the low
				// bit of tophash to decide which way NaNs go.
				// NOTE: this case is why we need two evacuate tophash
				// values, evacuatedX and evacuatedY, that differ in
				// their low bit.
				if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
					continue
				}
			}
		}
		if it.clearSeq == h.clearSeq &&
			((b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
				!(t.ReflexiveKey() || t.Key.Equal(k, k))) {
			// This is the golden data, we can return it.
			// OR
			// key!=key, so the entry can't be deleted or updated, so we can just return it.
			// That's lucky for us because when key!=key we can't look it up successfully.
			it.key = k
			if t.IndirectElem() {
				e = *((*unsafe.Pointer)(e))
			}
			it.elem = e
		} else {
			// The hash table has grown since the iterator was started.
			// The golden data for this key is now somewhere else.
			// Check the current hash table for the data.
			// This code handles the case where the key
			// has been deleted, updated, or deleted and reinserted.
			// NOTE: we need to regrab the key as it has potentially been
			// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
			rk, re := mapaccessK(t, h, k)
			if rk == nil {
				continue // key has been deleted
			}
			it.key = rk
			it.elem = re
		}
		it.bucket = bucket
		if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
			it.bptr = b
		}
		it.i = i + 1
		it.checkBucket = checkBucket
		return
	}
	b = b.overflow(t)
	i = 0
	goto next
}

// mapclear deletes all keys from a map.
// It is called by the compiler.
func mapclear(t *maptype, h *hmap) {
	if raceenabled && h != nil {
		callerpc := sys.GetCallerPC()
		pc := abi.FuncPCABIInternal(mapclear)
		racewritepc(unsafe.Pointer(h), callerpc, pc)
	}

	if h == nil || h.count == 0 {
		return
	}

	if h.flags&hashWriting != 0 {
		fatal("concurrent map writes")
	}

	h.flags ^= hashWriting
	h.flags &^= sameSizeGrow
	h.oldbuckets = nil
	h.nevacuate = 0
	h.noverflow = 0
	h.count = 0
	h.clearSeq++

	// Reset the hash seed to make it more difficult for attackers to
	// repeatedly trigger hash collisions. See issue 25237.
	h.hash0 = uint32(rand())

	// Keep the mapextra allocation but clear any extra information.
	if h.extra != nil {
		*h.extra = mapextra{}
	}

	// makeBucketArray clears the memory pointed to by h.buckets
	// and recovers any overflow buckets by generating them
	// as if h.buckets was newly alloced.
	_, nextOverflow := makeBucketArray(t, h.B, h.buckets)
	if nextOverflow != nil {
		// If overflow buckets are created then h.extra
		// will have been allocated during initial bucket creation.
		h.extra.nextOverflow = nextOverflow
	}

	if h.flags&hashWriting == 0 {
		fatal("concurrent map writes")
	}
	h.flags &^= hashWriting
}

func hashGrow(t *maptype, h *hmap) {
	// If we've hit the load factor, get bigger.
	// Otherwise, there are too many overflow buckets,
	// so keep the same number of buckets and "grow" laterally.
	bigger := uint8(1)
	if !overLoadFactor(h.count+1, h.B) {
		bigger = 0
		h.flags |= sameSizeGrow
	}
	oldbuckets := h.buckets
	newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)

	flags := h.flags &^ (iterator | oldIterator)
	if h.flags&iterator != 0 {
		flags |= oldIterator
	}
	// commit the grow (atomic wrt gc)
	h.B += bigger
	h.flags = flags
	h.oldbuckets = oldbuckets
	h.buckets = newbuckets
	h.nevacuate = 0
	h.noverflow = 0

	if h.extra != nil && h.extra.overflow != nil {
		// Promote current overflow buckets to the old generation.
		if h.extra.oldoverflow != nil {
			throw("oldoverflow is not nil")
		}
		h.extra.oldoverflow = h.extra.overflow
		h.extra.overflow = nil
	}
	if nextOverflow != nil {
		if h.extra == nil {
			h.extra = new(mapextra)
		}
		h.extra.nextOverflow = nextOverflow
	}

	// the actual copying of the hash table data is done incrementally
	// by growWork() and evacuate().
}

// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
func overLoadFactor(count int, B uint8) bool {
	return count > abi.OldMapBucketCount && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}

// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
// Note that most of these overflow buckets must be in sparse use;
// if use was dense, then we'd have already triggered regular map growth.
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
	// If the threshold is too low, we do extraneous work.
	// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
	// "too many" means (approximately) as many overflow buckets as regular buckets.
	// See incrnoverflow for more details.
	if B > 15 {
		B = 15
	}
	// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
	return noverflow >= uint16(1)<<(B&15)
}

// growing reports whether h is growing. The growth may be to the same size or bigger.
func (h *hmap) growing() bool {
	return h.oldbuckets != nil
}

// sameSizeGrow reports whether the current growth is to a map of the same size.
func (h *hmap) sameSizeGrow() bool {
	return h.flags&sameSizeGrow != 0
}

//go:linkname sameSizeGrowForIssue69110Test
func sameSizeGrowForIssue69110Test(h *hmap) bool {
	return h.sameSizeGrow()
}

// noldbuckets calculates the number of buckets prior to the current map growth.
func (h *hmap) noldbuckets() uintptr {
	oldB := h.B
	if !h.sameSizeGrow() {
		oldB--
	}
	return bucketShift(oldB)
}

// oldbucketmask provides a mask that can be applied to calculate n % noldbuckets().
func (h *hmap) oldbucketmask() uintptr {
	return h.noldbuckets() - 1
}

func growWork(t *maptype, h *hmap, bucket uintptr) {
	// make sure we evacuate the oldbucket corresponding
	// to the bucket we're about to use
	evacuate(t, h, bucket&h.oldbucketmask())

	// evacuate one more oldbucket to make progress on growing
	if h.growing() {
		evacuate(t, h, h.nevacuate)
	}
}

func bucketEvacuated(t *maptype, h *hmap, bucket uintptr) bool {
	b := (*bmap)(add(h.oldbuckets, bucket*uintptr(t.BucketSize)))
	return evacuated(b)
}

// evacDst is an evacuation destination.
type evacDst struct {
	b *bmap          // current destination bucket
	i int            // key/elem index into b
	k unsafe.Pointer // pointer to current key storage
	e unsafe.Pointer // pointer to current elem storage
}

func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
	b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.BucketSize)))
	newbit := h.noldbuckets()
	if !evacuated(b) {
		// TODO: reuse overflow buckets instead of using new ones, if there
		// is no iterator using the old buckets.  (If !oldIterator.)

		// xy contains the x and y (low and high) evacuation destinations.
		var xy [2]evacDst
		x := &xy[0]
		x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.BucketSize)))
		x.k = add(unsafe.Pointer(x.b), dataOffset)
		x.e = add(x.k, abi.OldMapBucketCount*uintptr(t.KeySize))

		if !h.sameSizeGrow() {
			// Only calculate y pointers if we're growing bigger.
			// Otherwise GC can see bad pointers.
			y := &xy[1]
			y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.BucketSize)))
			y.k = add(unsafe.Pointer(y.b), dataOffset)
			y.e = add(y.k, abi.OldMapBucketCount*uintptr(t.KeySize))
		}

		for ; b != nil; b = b.overflow(t) {
			k := add(unsafe.Pointer(b), dataOffset)
			e := add(k, abi.OldMapBucketCount*uintptr(t.KeySize))
			for i := 0; i < abi.OldMapBucketCount; i, k, e = i+1, add(k, uintptr(t.KeySize)), add(e, uintptr(t.ValueSize)) {
				top := b.tophash[i]
				if isEmpty(top) {
					b.tophash[i] = evacuatedEmpty
					continue
				}
				if top < minTopHash {
					throw("bad map state")
				}
				k2 := k
				if t.IndirectKey() {
					k2 = *((*unsafe.Pointer)(k2))
				}
				var useY uint8
				if !h.sameSizeGrow() {
					// Compute hash to make our evacuation decision (whether we need
					// to send this key/elem to bucket x or bucket y).
					hash := t.Hasher(k2, uintptr(h.hash0))
					if h.flags&iterator != 0 && !t.ReflexiveKey() && !t.Key.Equal(k2, k2) {
						// If key != key (NaNs), then the hash could be (and probably
						// will be) entirely different from the old hash. Moreover,
						// it isn't reproducible. Reproducibility is required in the
						// presence of iterators, as our evacuation decision must
						// match whatever decision the iterator made.
						// Fortunately, we have the freedom to send these keys either
						// way. Also, tophash is meaningless for these kinds of keys.
						// We let the low bit of tophash drive the evacuation decision.
						// We recompute a new random tophash for the next level so
						// these keys will get evenly distributed across all buckets
						// after multiple grows.
						useY = top & 1
						top = tophash(hash)
					} else {
						if hash&newbit != 0 {
							useY = 1
						}
					}
				}

				if evacuatedX+1 != evacuatedY || evacuatedX^1 != evacuatedY {
					throw("bad evacuatedN")
				}

				b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
				dst := &xy[useY]                 // evacuation destination

				if dst.i == abi.OldMapBucketCount {
					dst.b = h.newoverflow(t, dst.b)
					dst.i = 0
					dst.k = add(unsafe.Pointer(dst.b), dataOffset)
					dst.e = add(dst.k, abi.OldMapBucketCount*uintptr(t.KeySize))
				}
				dst.b.tophash[dst.i&(abi.OldMapBucketCount-1)] = top // mask dst.i as an optimization, to avoid a bounds check
				if t.IndirectKey() {
					*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
				} else {
					typedmemmove(t.Key, dst.k, k) // copy elem
				}
				if t.IndirectElem() {
					*(*unsafe.Pointer)(dst.e) = *(*unsafe.Pointer)(e)
				} else {
					typedmemmove(t.Elem, dst.e, e)
				}
				dst.i++
				// These updates might push these pointers past the end of the
				// key or elem arrays.  That's ok, as we have the overflow pointer
				// at the end of the bucket to protect against pointing past the
				// end of the bucket.
				dst.k = add(dst.k, uintptr(t.KeySize))
				dst.e = add(dst.e, uintptr(t.ValueSize))
			}
		}
		// Unlink the overflow buckets & clear key/elem to help GC.
		if h.flags&oldIterator == 0 && t.Bucket.Pointers() {
			b := add(h.oldbuckets, oldbucket*uintptr(t.BucketSize))
			// Preserve b.tophash because the evacuation
			// state is maintained there.
			ptr := add(b, dataOffset)
			n := uintptr(t.BucketSize) - dataOffset
			memclrHasPointers(ptr, n)
		}
	}

	if oldbucket == h.nevacuate {
		advanceEvacuationMark(h, t, newbit)
	}
}

func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
	h.nevacuate++
	// Experiments suggest that 1024 is overkill by at least an order of magnitude.
	// Put it in there as a safeguard anyway, to ensure O(1) behavior.
	stop := h.nevacuate + 1024
	if stop > newbit {
		stop = newbit
	}
	for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
		h.nevacuate++
	}
	if h.nevacuate == newbit { // newbit == # of oldbuckets
		// Growing is all done. Free old main bucket array.
		h.oldbuckets = nil
		// Can discard old overflow buckets as well.
		// If they are still referenced by an iterator,
		// then the iterator holds a pointers to the slice.
		if h.extra != nil {
			h.extra.oldoverflow = nil
		}
		h.flags &^= sameSizeGrow
	}
}

// Reflect stubs. Called from ../reflect/asm_*.s

// reflect_makemap is for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - gitee.com/quant1x/gox
//   - github.com/modern-go/reflect2
//   - github.com/goccy/go-json
//   - github.com/RomiChan/protobuf
//   - github.com/segmentio/encoding
//   - github.com/v2pro/plz
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_makemap reflect.makemap
func reflect_makemap(t *maptype, cap int) *hmap {
	// Check invariants and reflects math.
	if t.Key.Equal == nil {
		throw("runtime.reflect_makemap: unsupported map key type")
	}
	if t.Key.Size_ > abi.OldMapMaxKeyBytes && (!t.IndirectKey() || t.KeySize != uint8(goarch.PtrSize)) ||
		t.Key.Size_ <= abi.OldMapMaxKeyBytes && (t.IndirectKey() || t.KeySize != uint8(t.Key.Size_)) {
		throw("key size wrong")
	}
	if t.Elem.Size_ > abi.OldMapMaxElemBytes && (!t.IndirectElem() || t.ValueSize != uint8(goarch.PtrSize)) ||
		t.Elem.Size_ <= abi.OldMapMaxElemBytes && (t.IndirectElem() || t.ValueSize != uint8(t.Elem.Size_)) {
		throw("elem size wrong")
	}
	if t.Key.Align_ > abi.OldMapBucketCount {
		throw("key align too big")
	}
	if t.Elem.Align_ > abi.OldMapBucketCount {
		throw("elem align too big")
	}
	if t.Key.Size_%uintptr(t.Key.Align_) != 0 {
		throw("key size not a multiple of key align")
	}
	if t.Elem.Size_%uintptr(t.Elem.Align_) != 0 {
		throw("elem size not a multiple of elem align")
	}
	if abi.OldMapBucketCount < 8 {
		throw("bucketsize too small for proper alignment")
	}
	if dataOffset%uintptr(t.Key.Align_) != 0 {
		throw("need padding in bucket (key)")
	}
	if dataOffset%uintptr(t.Elem.Align_) != 0 {
		throw("need padding in bucket (elem)")
	}

	return makemap(t, cap, nil)
}

// reflect_mapaccess is for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - gitee.com/quant1x/gox
//   - github.com/modern-go/reflect2
//   - github.com/v2pro/plz
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_mapaccess reflect.mapaccess
func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	elem, ok := mapaccess2(t, h, key)
	if !ok {
		// reflect wants nil for a missing element
		elem = nil
	}
	return elem
}

//go:linkname reflect_mapaccess_faststr reflect.mapaccess_faststr
func reflect_mapaccess_faststr(t *maptype, h *hmap, key string) unsafe.Pointer {
	elem, ok := mapaccess2_faststr(t, h, key)
	if !ok {
		// reflect wants nil for a missing element
		elem = nil
	}
	return elem
}

// reflect_mapassign is for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - gitee.com/quant1x/gox
//   - github.com/v2pro/plz
//
// Do not remove or change the type signature.
//
//go:linkname reflect_mapassign reflect.mapassign0
func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, elem unsafe.Pointer) {
	p := mapassign(t, h, key)
	typedmemmove(t.Elem, p, elem)
}

//go:linkname reflect_mapassign_faststr reflect.mapassign_faststr0
func reflect_mapassign_faststr(t *maptype, h *hmap, key string, elem unsafe.Pointer) {
	p := mapassign_faststr(t, h, key)
	typedmemmove(t.Elem, p, elem)
}

//go:linkname reflect_mapdelete reflect.mapdelete
func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
	mapdelete(t, h, key)
}

//go:linkname reflect_mapdelete_faststr reflect.mapdelete_faststr
func reflect_mapdelete_faststr(t *maptype, h *hmap, key string) {
	mapdelete_faststr(t, h, key)
}

// reflect_mapiterinit is for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/modern-go/reflect2
//   - gitee.com/quant1x/gox
//   - github.com/v2pro/plz
//   - github.com/wI2L/jettison
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_mapiterinit reflect.mapiterinit
func reflect_mapiterinit(t *maptype, h *hmap, it *hiter) {
	mapiterinit(t, h, it)
}

// reflect_mapiternext is for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - gitee.com/quant1x/gox
//   - github.com/modern-go/reflect2
//   - github.com/goccy/go-json
//   - github.com/v2pro/plz
//   - github.com/wI2L/jettison
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_mapiternext reflect.mapiternext
func reflect_mapiternext(it *hiter) {
	mapiternext(it)
}

// reflect_mapiterkey was for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/goccy/go-json
//   - gonum.org/v1/gonum
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_mapiterkey reflect.mapiterkey
func reflect_mapiterkey(it *hiter) unsafe.Pointer {
	return it.key
}

// reflect_mapiterelem was for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/goccy/go-json
//   - gonum.org/v1/gonum
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_mapiterelem reflect.mapiterelem
func reflect_mapiterelem(it *hiter) unsafe.Pointer {
	return it.elem
}

// reflect_maplen is for package reflect,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - github.com/goccy/go-json
//   - github.com/wI2L/jettison
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname reflect_maplen reflect.maplen
func reflect_maplen(h *hmap) int {
	if h == nil {
		return 0
	}
	if raceenabled {
		callerpc := sys.GetCallerPC()
		racereadpc(unsafe.Pointer(h), callerpc, abi.FuncPCABIInternal(reflect_maplen))
	}
	return h.count
}

//go:linkname reflect_mapclear reflect.mapclear
func reflect_mapclear(t *maptype, h *hmap) {
	mapclear(t, h)
}

//go:linkname reflectlite_maplen internal/reflectlite.maplen
func reflectlite_maplen(h *hmap) int {
	if h == nil {
		return 0
	}
	if raceenabled {
		callerpc := sys.GetCallerPC()
		racereadpc(unsafe.Pointer(h), callerpc, abi.FuncPCABIInternal(reflect_maplen))
	}
	return h.count
}

// mapinitnoop is a no-op function known the Go linker; if a given global
// map (of the right size) is determined to be dead, the linker will
// rewrite the relocation (from the package init func) from the outlined
// map init function to this symbol. Defined in assembly so as to avoid
// complications with instrumentation (coverage, etc).
func mapinitnoop()

// mapclone for implementing maps.Clone
//
//go:linkname mapclone maps.clone
func mapclone(m any) any {
	e := efaceOf(&m)
	e.data = unsafe.Pointer(mapclone2((*maptype)(unsafe.Pointer(e._type)), (*hmap)(e.data)))
	return m
}

// moveToBmap moves a bucket from src to dst. It returns the destination bucket or new destination bucket if it overflows
// and the pos that the next key/value will be written, if pos == bucketCnt means needs to written in overflow bucket.
func moveToBmap(t *maptype, h *hmap, dst *bmap, pos int, src *bmap) (*bmap, int) {
	for i := 0; i < abi.OldMapBucketCount; i++ {
		if isEmpty(src.tophash[i]) {
			continue
		}

		for ; pos < abi.OldMapBucketCount; pos++ {
			if isEmpty(dst.tophash[pos]) {
				break
			}
		}

		if pos == abi.OldMapBucketCount {
			dst = h.newoverflow(t, dst)
			pos = 0
		}

		srcK := add(unsafe.Pointer(src), dataOffset+uintptr(i)*uintptr(t.KeySize))
		srcEle := add(unsafe.Pointer(src), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+uintptr(i)*uintptr(t.ValueSize))
		dstK := add(unsafe.Pointer(dst), dataOffset+uintptr(pos)*uintptr(t.KeySize))
		dstEle := add(unsafe.Pointer(dst), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+uintptr(pos)*uintptr(t.ValueSize))

		dst.tophash[pos] = src.tophash[i]
		if t.IndirectKey() {
			srcK = *(*unsafe.Pointer)(srcK)
			if t.NeedKeyUpdate() {
				kStore := newobject(t.Key)
				typedmemmove(t.Key, kStore, srcK)
				srcK = kStore
			}
			// Note: if NeedKeyUpdate is false, then the memory
			// used to store the key is immutable, so we can share
			// it between the original map and its clone.
			*(*unsafe.Pointer)(dstK) = srcK
		} else {
			typedmemmove(t.Key, dstK, srcK)
		}
		if t.IndirectElem() {
			srcEle = *(*unsafe.Pointer)(srcEle)
			eStore := newobject(t.Elem)
			typedmemmove(t.Elem, eStore, srcEle)
			*(*unsafe.Pointer)(dstEle) = eStore
		} else {
			typedmemmove(t.Elem, dstEle, srcEle)
		}
		pos++
		h.count++
	}
	return dst, pos
}

func mapclone2(t *maptype, src *hmap) *hmap {
	hint := src.count
	if overLoadFactor(hint, src.B) {
		// Note: in rare cases (e.g. during a same-sized grow) the map
		// can be overloaded. Make sure we don't allocate a destination
		// bucket array larger than the source bucket array.
		// This will cause the cloned map to be overloaded also,
		// but that's better than crashing. See issue 69110.
		hint = int(loadFactorNum * (bucketShift(src.B) / loadFactorDen))
	}
	dst := makemap(t, hint, nil)
	dst.hash0 = src.hash0
	dst.nevacuate = 0
	// flags do not need to be copied here, just like a new map has no flags.

	if src.count == 0 {
		return dst
	}

	if src.flags&hashWriting != 0 {
		fatal("concurrent map clone and map write")
	}

	if src.B == 0 && !(t.IndirectKey() && t.NeedKeyUpdate()) && !t.IndirectElem() {
		// Quick copy for small maps.
		dst.buckets = newobject(t.Bucket)
		dst.count = src.count
		typedmemmove(t.Bucket, dst.buckets, src.buckets)
		return dst
	}

	if dst.B == 0 {
		dst.buckets = newobject(t.Bucket)
	}
	dstArraySize := int(bucketShift(dst.B))
	srcArraySize := int(bucketShift(src.B))
	for i := 0; i < dstArraySize; i++ {
		dstBmap := (*bmap)(add(dst.buckets, uintptr(i*int(t.BucketSize))))
		pos := 0
		for j := 0; j < srcArraySize; j += dstArraySize {
			srcBmap := (*bmap)(add(src.buckets, uintptr((i+j)*int(t.BucketSize))))
			for srcBmap != nil {
				dstBmap, pos = moveToBmap(t, dst, dstBmap, pos, srcBmap)
				srcBmap = srcBmap.overflow(t)
			}
		}
	}

	if src.oldbuckets == nil {
		return dst
	}

	oldB := src.B
	srcOldbuckets := src.oldbuckets
	if !src.sameSizeGrow() {
		oldB--
	}
	oldSrcArraySize := int(bucketShift(oldB))

	for i := 0; i < oldSrcArraySize; i++ {
		srcBmap := (*bmap)(add(srcOldbuckets, uintptr(i*int(t.BucketSize))))
		if evacuated(srcBmap) {
			continue
		}

		if oldB >= dst.B { // main bucket bits in dst is less than oldB bits in src
			dstBmap := (*bmap)(add(dst.buckets, (uintptr(i)&bucketMask(dst.B))*uintptr(t.BucketSize)))
			for dstBmap.overflow(t) != nil {
				dstBmap = dstBmap.overflow(t)
			}
			pos := 0
			for srcBmap != nil {
				dstBmap, pos = moveToBmap(t, dst, dstBmap, pos, srcBmap)
				srcBmap = srcBmap.overflow(t)
			}
			continue
		}

		// oldB < dst.B, so a single source bucket may go to multiple destination buckets.
		// Process entries one at a time.
		for srcBmap != nil {
			// move from oldBlucket to new bucket
			for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
				if isEmpty(srcBmap.tophash[i]) {
					continue
				}

				if src.flags&hashWriting != 0 {
					fatal("concurrent map clone and map write")
				}

				srcK := add(unsafe.Pointer(srcBmap), dataOffset+i*uintptr(t.KeySize))
				if t.IndirectKey() {
					srcK = *((*unsafe.Pointer)(srcK))
				}

				srcEle := add(unsafe.Pointer(srcBmap), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
				if t.IndirectElem() {
					srcEle = *((*unsafe.Pointer)(srcEle))
				}
				dstEle := mapassign(t, dst, srcK)
				typedmemmove(t.Elem, dstEle, srcEle)
			}
			srcBmap = srcBmap.overflow(t)
		}
	}
	return dst
}

// keys for implementing maps.keys
//
//go:linkname keys maps.keys
func keys(m any, p unsafe.Pointer) {
	e := efaceOf(&m)
	t := (*maptype)(unsafe.Pointer(e._type))
	h := (*hmap)(e.data)

	if h == nil || h.count == 0 {
		return
	}
	s := (*slice)(p)
	r := int(rand())
	offset := uint8(r >> h.B & (abi.OldMapBucketCount - 1))
	if h.B == 0 {
		copyKeys(t, h, (*bmap)(h.buckets), s, offset)
		return
	}
	arraySize := int(bucketShift(h.B))
	buckets := h.buckets
	for i := 0; i < arraySize; i++ {
		bucket := (i + r) & (arraySize - 1)
		b := (*bmap)(add(buckets, uintptr(bucket)*uintptr(t.BucketSize)))
		copyKeys(t, h, b, s, offset)
	}

	if h.growing() {
		oldArraySize := int(h.noldbuckets())
		for i := 0; i < oldArraySize; i++ {
			bucket := (i + r) & (oldArraySize - 1)
			b := (*bmap)(add(h.oldbuckets, uintptr(bucket)*uintptr(t.BucketSize)))
			if evacuated(b) {
				continue
			}
			copyKeys(t, h, b, s, offset)
		}
	}
	return
}

func copyKeys(t *maptype, h *hmap, b *bmap, s *slice, offset uint8) {
	for b != nil {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			offi := (i + uintptr(offset)) & (abi.OldMapBucketCount - 1)
			if isEmpty(b.tophash[offi]) {
				continue
			}
			if h.flags&hashWriting != 0 {
				fatal("concurrent map read and map write")
			}
			k := add(unsafe.Pointer(b), dataOffset+offi*uintptr(t.KeySize))
			if t.IndirectKey() {
				k = *((*unsafe.Pointer)(k))
			}
			if s.len >= s.cap {
				fatal("concurrent map read and map write")
			}
			typedmemmove(t.Key, add(s.array, uintptr(s.len)*uintptr(t.Key.Size())), k)
			s.len++
		}
		b = b.overflow(t)
	}
}

// values for implementing maps.values
//
//go:linkname values maps.values
func values(m any, p unsafe.Pointer) {
	e := efaceOf(&m)
	t := (*maptype)(unsafe.Pointer(e._type))
	h := (*hmap)(e.data)
	if h == nil || h.count == 0 {
		return
	}
	s := (*slice)(p)
	r := int(rand())
	offset := uint8(r >> h.B & (abi.OldMapBucketCount - 1))
	if h.B == 0 {
		copyValues(t, h, (*bmap)(h.buckets), s, offset)
		return
	}
	arraySize := int(bucketShift(h.B))
	buckets := h.buckets
	for i := 0; i < arraySize; i++ {
		bucket := (i + r) & (arraySize - 1)
		b := (*bmap)(add(buckets, uintptr(bucket)*uintptr(t.BucketSize)))
		copyValues(t, h, b, s, offset)
	}

	if h.growing() {
		oldArraySize := int(h.noldbuckets())
		for i := 0; i < oldArraySize; i++ {
			bucket := (i + r) & (oldArraySize - 1)
			b := (*bmap)(add(h.oldbuckets, uintptr(bucket)*uintptr(t.BucketSize)))
			if evacuated(b) {
				continue
			}
			copyValues(t, h, b, s, offset)
		}
	}
	return
}

func copyValues(t *maptype, h *hmap, b *bmap, s *slice, offset uint8) {
	for b != nil {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			offi := (i + uintptr(offset)) & (abi.OldMapBucketCount - 1)
			if isEmpty(b.tophash[offi]) {
				continue
			}

			if h.flags&hashWriting != 0 {
				fatal("concurrent map read and map write")
			}

			ele := add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+offi*uintptr(t.ValueSize))
			if t.IndirectElem() {
				ele = *((*unsafe.Pointer)(ele))
			}
			if s.len >= s.cap {
				fatal("concurrent map read and map write")
			}
			typedmemmove(t.Elem, add(s.array, uintptr(s.len)*uintptr(t.Elem.Size())), ele)
			s.len++
		}
		b = b.overflow(t)
	}
}