Source file src/encoding/json/encode.go

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 7159. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"cmp"
    16  	"encoding"
    17  	"encoding/base64"
    18  	"fmt"
    19  	"math"
    20  	"reflect"
    21  	"slices"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"unicode"
    26  	"unicode/utf8"
    27  	_ "unsafe" // for linkname
    28  )
    29  
    30  // Marshal returns the JSON encoding of v.
    31  //
    32  // Marshal traverses the value v recursively.
    33  // If an encountered value implements [Marshaler]
    34  // and is not a nil pointer, Marshal calls [Marshaler.MarshalJSON]
    35  // to produce JSON. If no [Marshaler.MarshalJSON] method is present but the
    36  // value implements [encoding.TextMarshaler] instead, Marshal calls
    37  // [encoding.TextMarshaler.MarshalText] and encodes the result as a JSON string.
    38  // The nil pointer exception is not strictly necessary
    39  // but mimics a similar, necessary exception in the behavior of
    40  // [Unmarshaler.UnmarshalJSON].
    41  //
    42  // Otherwise, Marshal uses the following type-dependent default encodings:
    43  //
    44  // Boolean values encode as JSON booleans.
    45  //
    46  // Floating point, integer, and [Number] values encode as JSON numbers.
    47  // NaN and +/-Inf values will return an [UnsupportedValueError].
    48  //
    49  // String values encode as JSON strings coerced to valid UTF-8,
    50  // replacing invalid bytes with the Unicode replacement rune.
    51  // So that the JSON will be safe to embed inside HTML <script> tags,
    52  // the string is encoded using [HTMLEscape],
    53  // which replaces "<", ">", "&", U+2028, and U+2029 are escaped
    54  // to "\u003c","\u003e", "\u0026", "\u2028", and "\u2029".
    55  // This replacement can be disabled when using an [Encoder],
    56  // by calling [Encoder.SetEscapeHTML](false).
    57  //
    58  // Array and slice values encode as JSON arrays, except that
    59  // []byte encodes as a base64-encoded string, and a nil slice
    60  // encodes as the null JSON value.
    61  //
    62  // Struct values encode as JSON objects.
    63  // Each exported struct field becomes a member of the object, using the
    64  // field name as the object key, unless the field is omitted for one of the
    65  // reasons given below.
    66  //
    67  // The encoding of each struct field can be customized by the format string
    68  // stored under the "json" key in the struct field's tag.
    69  // The format string gives the name of the field, possibly followed by a
    70  // comma-separated list of options. The name may be empty in order to
    71  // specify options without overriding the default field name.
    72  //
    73  // The "omitempty" option specifies that the field should be omitted
    74  // from the encoding if the field has an empty value, defined as
    75  // false, 0, a nil pointer, a nil interface value, and any empty array,
    76  // slice, map, or string.
    77  //
    78  // As a special case, if the field tag is "-", the field is always omitted.
    79  // Note that a field with name "-" can still be generated using the tag "-,".
    80  //
    81  // Examples of struct field tags and their meanings:
    82  //
    83  //	// Field appears in JSON as key "myName".
    84  //	Field int `json:"myName"`
    85  //
    86  //	// Field appears in JSON as key "myName" and
    87  //	// the field is omitted from the object if its value is empty,
    88  //	// as defined above.
    89  //	Field int `json:"myName,omitempty"`
    90  //
    91  //	// Field appears in JSON as key "Field" (the default), but
    92  //	// the field is skipped if empty.
    93  //	// Note the leading comma.
    94  //	Field int `json:",omitempty"`
    95  //
    96  //	// Field is ignored by this package.
    97  //	Field int `json:"-"`
    98  //
    99  //	// Field appears in JSON as key "-".
   100  //	Field int `json:"-,"`
   101  //
   102  // The "string" option signals that a field is stored as JSON inside a
   103  // JSON-encoded string. It applies only to fields of string, floating point,
   104  // integer, or boolean types. This extra level of encoding is sometimes used
   105  // when communicating with JavaScript programs:
   106  //
   107  //	Int64String int64 `json:",string"`
   108  //
   109  // The key name will be used if it's a non-empty string consisting of
   110  // only Unicode letters, digits, and ASCII punctuation except quotation
   111  // marks, backslash, and comma.
   112  //
   113  // Embedded struct fields are usually marshaled as if their inner exported fields
   114  // were fields in the outer struct, subject to the usual Go visibility rules amended
   115  // as described in the next paragraph.
   116  // An anonymous struct field with a name given in its JSON tag is treated as
   117  // having that name, rather than being anonymous.
   118  // An anonymous struct field of interface type is treated the same as having
   119  // that type as its name, rather than being anonymous.
   120  //
   121  // The Go visibility rules for struct fields are amended for JSON when
   122  // deciding which field to marshal or unmarshal. If there are
   123  // multiple fields at the same level, and that level is the least
   124  // nested (and would therefore be the nesting level selected by the
   125  // usual Go rules), the following extra rules apply:
   126  //
   127  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   128  // even if there are multiple untagged fields that would otherwise conflict.
   129  //
   130  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   131  //
   132  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   133  //
   134  // Handling of anonymous struct fields is new in Go 1.1.
   135  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   136  // an anonymous struct field in both current and earlier versions, give the field
   137  // a JSON tag of "-".
   138  //
   139  // Map values encode as JSON objects. The map's key type must either be a
   140  // string, an integer type, or implement [encoding.TextMarshaler]. The map keys
   141  // are sorted and used as JSON object keys by applying the following rules,
   142  // subject to the UTF-8 coercion described for string values above:
   143  //   - keys of any string type are used directly
   144  //   - keys that implement [encoding.TextMarshaler] are marshaled
   145  //   - integer keys are converted to strings
   146  //
   147  // Pointer values encode as the value pointed to.
   148  // A nil pointer encodes as the null JSON value.
   149  //
   150  // Interface values encode as the value contained in the interface.
   151  // A nil interface value encodes as the null JSON value.
   152  //
   153  // Channel, complex, and function values cannot be encoded in JSON.
   154  // Attempting to encode such a value causes Marshal to return
   155  // an [UnsupportedTypeError].
   156  //
   157  // JSON cannot represent cyclic data structures and Marshal does not
   158  // handle them. Passing cyclic structures to Marshal will result in
   159  // an error.
   160  func Marshal(v any) ([]byte, error) {
   161  	e := newEncodeState()
   162  	defer encodeStatePool.Put(e)
   163  
   164  	err := e.marshal(v, encOpts{escapeHTML: true})
   165  	if err != nil {
   166  		return nil, err
   167  	}
   168  	buf := append([]byte(nil), e.Bytes()...)
   169  
   170  	return buf, nil
   171  }
   172  
   173  // MarshalIndent is like [Marshal] but applies [Indent] to format the output.
   174  // Each JSON element in the output will begin on a new line beginning with prefix
   175  // followed by one or more copies of indent according to the indentation nesting.
   176  func MarshalIndent(v any, prefix, indent string) ([]byte, error) {
   177  	b, err := Marshal(v)
   178  	if err != nil {
   179  		return nil, err
   180  	}
   181  	b2 := make([]byte, 0, indentGrowthFactor*len(b))
   182  	b2, err = appendIndent(b2, b, prefix, indent)
   183  	if err != nil {
   184  		return nil, err
   185  	}
   186  	return b2, nil
   187  }
   188  
   189  // Marshaler is the interface implemented by types that
   190  // can marshal themselves into valid JSON.
   191  type Marshaler interface {
   192  	MarshalJSON() ([]byte, error)
   193  }
   194  
   195  // An UnsupportedTypeError is returned by [Marshal] when attempting
   196  // to encode an unsupported value type.
   197  type UnsupportedTypeError struct {
   198  	Type reflect.Type
   199  }
   200  
   201  func (e *UnsupportedTypeError) Error() string {
   202  	return "json: unsupported type: " + e.Type.String()
   203  }
   204  
   205  // An UnsupportedValueError is returned by [Marshal] when attempting
   206  // to encode an unsupported value.
   207  type UnsupportedValueError struct {
   208  	Value reflect.Value
   209  	Str   string
   210  }
   211  
   212  func (e *UnsupportedValueError) Error() string {
   213  	return "json: unsupported value: " + e.Str
   214  }
   215  
   216  // Before Go 1.2, an InvalidUTF8Error was returned by [Marshal] when
   217  // attempting to encode a string value with invalid UTF-8 sequences.
   218  // As of Go 1.2, [Marshal] instead coerces the string to valid UTF-8 by
   219  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   220  //
   221  // Deprecated: No longer used; kept for compatibility.
   222  type InvalidUTF8Error struct {
   223  	S string // the whole string value that caused the error
   224  }
   225  
   226  func (e *InvalidUTF8Error) Error() string {
   227  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   228  }
   229  
   230  // A MarshalerError represents an error from calling a
   231  // [Marshaler.MarshalJSON] or [encoding.TextMarshaler.MarshalText] method.
   232  type MarshalerError struct {
   233  	Type       reflect.Type
   234  	Err        error
   235  	sourceFunc string
   236  }
   237  
   238  func (e *MarshalerError) Error() string {
   239  	srcFunc := e.sourceFunc
   240  	if srcFunc == "" {
   241  		srcFunc = "MarshalJSON"
   242  	}
   243  	return "json: error calling " + srcFunc +
   244  		" for type " + e.Type.String() +
   245  		": " + e.Err.Error()
   246  }
   247  
   248  // Unwrap returns the underlying error.
   249  func (e *MarshalerError) Unwrap() error { return e.Err }
   250  
   251  const hex = "0123456789abcdef"
   252  
   253  // An encodeState encodes JSON into a bytes.Buffer.
   254  type encodeState struct {
   255  	bytes.Buffer // accumulated output
   256  
   257  	// Keep track of what pointers we've seen in the current recursive call
   258  	// path, to avoid cycles that could lead to a stack overflow. Only do
   259  	// the relatively expensive map operations if ptrLevel is larger than
   260  	// startDetectingCyclesAfter, so that we skip the work if we're within a
   261  	// reasonable amount of nested pointers deep.
   262  	ptrLevel uint
   263  	ptrSeen  map[any]struct{}
   264  }
   265  
   266  const startDetectingCyclesAfter = 1000
   267  
   268  var encodeStatePool sync.Pool
   269  
   270  func newEncodeState() *encodeState {
   271  	if v := encodeStatePool.Get(); v != nil {
   272  		e := v.(*encodeState)
   273  		e.Reset()
   274  		if len(e.ptrSeen) > 0 {
   275  			panic("ptrEncoder.encode should have emptied ptrSeen via defers")
   276  		}
   277  		e.ptrLevel = 0
   278  		return e
   279  	}
   280  	return &encodeState{ptrSeen: make(map[any]struct{})}
   281  }
   282  
   283  // jsonError is an error wrapper type for internal use only.
   284  // Panics with errors are wrapped in jsonError so that the top-level recover
   285  // can distinguish intentional panics from this package.
   286  type jsonError struct{ error }
   287  
   288  func (e *encodeState) marshal(v any, opts encOpts) (err error) {
   289  	defer func() {
   290  		if r := recover(); r != nil {
   291  			if je, ok := r.(jsonError); ok {
   292  				err = je.error
   293  			} else {
   294  				panic(r)
   295  			}
   296  		}
   297  	}()
   298  	e.reflectValue(reflect.ValueOf(v), opts)
   299  	return nil
   300  }
   301  
   302  // error aborts the encoding by panicking with err wrapped in jsonError.
   303  func (e *encodeState) error(err error) {
   304  	panic(jsonError{err})
   305  }
   306  
   307  func isEmptyValue(v reflect.Value) bool {
   308  	switch v.Kind() {
   309  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   310  		return v.Len() == 0
   311  	case reflect.Bool,
   312  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   313  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
   314  		reflect.Float32, reflect.Float64,
   315  		reflect.Interface, reflect.Pointer:
   316  		return v.IsZero()
   317  	}
   318  	return false
   319  }
   320  
   321  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   322  	valueEncoder(v)(e, v, opts)
   323  }
   324  
   325  type encOpts struct {
   326  	// quoted causes primitive fields to be encoded inside JSON strings.
   327  	quoted bool
   328  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   329  	escapeHTML bool
   330  }
   331  
   332  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   333  
   334  var encoderCache sync.Map // map[reflect.Type]encoderFunc
   335  
   336  func valueEncoder(v reflect.Value) encoderFunc {
   337  	if !v.IsValid() {
   338  		return invalidValueEncoder
   339  	}
   340  	return typeEncoder(v.Type())
   341  }
   342  
   343  func typeEncoder(t reflect.Type) encoderFunc {
   344  	if fi, ok := encoderCache.Load(t); ok {
   345  		return fi.(encoderFunc)
   346  	}
   347  
   348  	// To deal with recursive types, populate the map with an
   349  	// indirect func before we build it. This type waits on the
   350  	// real func (f) to be ready and then calls it. This indirect
   351  	// func is only used for recursive types.
   352  	var (
   353  		wg sync.WaitGroup
   354  		f  encoderFunc
   355  	)
   356  	wg.Add(1)
   357  	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
   358  		wg.Wait()
   359  		f(e, v, opts)
   360  	}))
   361  	if loaded {
   362  		return fi.(encoderFunc)
   363  	}
   364  
   365  	// Compute the real encoder and replace the indirect func with it.
   366  	f = newTypeEncoder(t, true)
   367  	wg.Done()
   368  	encoderCache.Store(t, f)
   369  	return f
   370  }
   371  
   372  var (
   373  	marshalerType     = reflect.TypeFor[Marshaler]()
   374  	textMarshalerType = reflect.TypeFor[encoding.TextMarshaler]()
   375  )
   376  
   377  // newTypeEncoder constructs an encoderFunc for a type.
   378  // The returned encoder only checks CanAddr when allowAddr is true.
   379  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   380  	// If we have a non-pointer value whose type implements
   381  	// Marshaler with a value receiver, then we're better off taking
   382  	// the address of the value - otherwise we end up with an
   383  	// allocation as we cast the value to an interface.
   384  	if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(marshalerType) {
   385  		return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   386  	}
   387  	if t.Implements(marshalerType) {
   388  		return marshalerEncoder
   389  	}
   390  	if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(textMarshalerType) {
   391  		return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   392  	}
   393  	if t.Implements(textMarshalerType) {
   394  		return textMarshalerEncoder
   395  	}
   396  
   397  	switch t.Kind() {
   398  	case reflect.Bool:
   399  		return boolEncoder
   400  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   401  		return intEncoder
   402  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   403  		return uintEncoder
   404  	case reflect.Float32:
   405  		return float32Encoder
   406  	case reflect.Float64:
   407  		return float64Encoder
   408  	case reflect.String:
   409  		return stringEncoder
   410  	case reflect.Interface:
   411  		return interfaceEncoder
   412  	case reflect.Struct:
   413  		return newStructEncoder(t)
   414  	case reflect.Map:
   415  		return newMapEncoder(t)
   416  	case reflect.Slice:
   417  		return newSliceEncoder(t)
   418  	case reflect.Array:
   419  		return newArrayEncoder(t)
   420  	case reflect.Pointer:
   421  		return newPtrEncoder(t)
   422  	default:
   423  		return unsupportedTypeEncoder
   424  	}
   425  }
   426  
   427  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   428  	e.WriteString("null")
   429  }
   430  
   431  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   432  	if v.Kind() == reflect.Pointer && v.IsNil() {
   433  		e.WriteString("null")
   434  		return
   435  	}
   436  	m, ok := v.Interface().(Marshaler)
   437  	if !ok {
   438  		e.WriteString("null")
   439  		return
   440  	}
   441  	b, err := m.MarshalJSON()
   442  	if err == nil {
   443  		e.Grow(len(b))
   444  		out := e.AvailableBuffer()
   445  		out, err = appendCompact(out, b, opts.escapeHTML)
   446  		e.Buffer.Write(out)
   447  	}
   448  	if err != nil {
   449  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   450  	}
   451  }
   452  
   453  func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   454  	va := v.Addr()
   455  	if va.IsNil() {
   456  		e.WriteString("null")
   457  		return
   458  	}
   459  	m := va.Interface().(Marshaler)
   460  	b, err := m.MarshalJSON()
   461  	if err == nil {
   462  		e.Grow(len(b))
   463  		out := e.AvailableBuffer()
   464  		out, err = appendCompact(out, b, opts.escapeHTML)
   465  		e.Buffer.Write(out)
   466  	}
   467  	if err != nil {
   468  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   469  	}
   470  }
   471  
   472  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   473  	if v.Kind() == reflect.Pointer && v.IsNil() {
   474  		e.WriteString("null")
   475  		return
   476  	}
   477  	m, ok := v.Interface().(encoding.TextMarshaler)
   478  	if !ok {
   479  		e.WriteString("null")
   480  		return
   481  	}
   482  	b, err := m.MarshalText()
   483  	if err != nil {
   484  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   485  	}
   486  	e.Write(appendString(e.AvailableBuffer(), b, opts.escapeHTML))
   487  }
   488  
   489  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   490  	va := v.Addr()
   491  	if va.IsNil() {
   492  		e.WriteString("null")
   493  		return
   494  	}
   495  	m := va.Interface().(encoding.TextMarshaler)
   496  	b, err := m.MarshalText()
   497  	if err != nil {
   498  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   499  	}
   500  	e.Write(appendString(e.AvailableBuffer(), b, opts.escapeHTML))
   501  }
   502  
   503  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   504  	b := e.AvailableBuffer()
   505  	b = mayAppendQuote(b, opts.quoted)
   506  	b = strconv.AppendBool(b, v.Bool())
   507  	b = mayAppendQuote(b, opts.quoted)
   508  	e.Write(b)
   509  }
   510  
   511  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   512  	b := e.AvailableBuffer()
   513  	b = mayAppendQuote(b, opts.quoted)
   514  	b = strconv.AppendInt(b, v.Int(), 10)
   515  	b = mayAppendQuote(b, opts.quoted)
   516  	e.Write(b)
   517  }
   518  
   519  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   520  	b := e.AvailableBuffer()
   521  	b = mayAppendQuote(b, opts.quoted)
   522  	b = strconv.AppendUint(b, v.Uint(), 10)
   523  	b = mayAppendQuote(b, opts.quoted)
   524  	e.Write(b)
   525  }
   526  
   527  type floatEncoder int // number of bits
   528  
   529  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   530  	f := v.Float()
   531  	if math.IsInf(f, 0) || math.IsNaN(f) {
   532  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   533  	}
   534  
   535  	// Convert as if by ES6 number to string conversion.
   536  	// This matches most other JSON generators.
   537  	// See golang.org/issue/6384 and golang.org/issue/14135.
   538  	// Like fmt %g, but the exponent cutoffs are different
   539  	// and exponents themselves are not padded to two digits.
   540  	b := e.AvailableBuffer()
   541  	b = mayAppendQuote(b, opts.quoted)
   542  	abs := math.Abs(f)
   543  	fmt := byte('f')
   544  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   545  	if abs != 0 {
   546  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   547  			fmt = 'e'
   548  		}
   549  	}
   550  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   551  	if fmt == 'e' {
   552  		// clean up e-09 to e-9
   553  		n := len(b)
   554  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   555  			b[n-2] = b[n-1]
   556  			b = b[:n-1]
   557  		}
   558  	}
   559  	b = mayAppendQuote(b, opts.quoted)
   560  	e.Write(b)
   561  }
   562  
   563  var (
   564  	float32Encoder = (floatEncoder(32)).encode
   565  	float64Encoder = (floatEncoder(64)).encode
   566  )
   567  
   568  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   569  	if v.Type() == numberType {
   570  		numStr := v.String()
   571  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   572  		// we keep compatibility so check validity after this.
   573  		if numStr == "" {
   574  			numStr = "0" // Number's zero-val
   575  		}
   576  		if !isValidNumber(numStr) {
   577  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   578  		}
   579  		b := e.AvailableBuffer()
   580  		b = mayAppendQuote(b, opts.quoted)
   581  		b = append(b, numStr...)
   582  		b = mayAppendQuote(b, opts.quoted)
   583  		e.Write(b)
   584  		return
   585  	}
   586  	if opts.quoted {
   587  		b := appendString(nil, v.String(), opts.escapeHTML)
   588  		e.Write(appendString(e.AvailableBuffer(), b, false)) // no need to escape again since it is already escaped
   589  	} else {
   590  		e.Write(appendString(e.AvailableBuffer(), v.String(), opts.escapeHTML))
   591  	}
   592  }
   593  
   594  // isValidNumber reports whether s is a valid JSON number literal.
   595  //
   596  // isValidNumber should be an internal detail,
   597  // but widely used packages access it using linkname.
   598  // Notable members of the hall of shame include:
   599  //   - github.com/bytedance/sonic
   600  //
   601  // Do not remove or change the type signature.
   602  // See go.dev/issue/67401.
   603  //
   604  //go:linkname isValidNumber
   605  func isValidNumber(s string) bool {
   606  	// This function implements the JSON numbers grammar.
   607  	// See https://tools.ietf.org/html/rfc7159#section-6
   608  	// and https://www.json.org/img/number.png
   609  
   610  	if s == "" {
   611  		return false
   612  	}
   613  
   614  	// Optional -
   615  	if s[0] == '-' {
   616  		s = s[1:]
   617  		if s == "" {
   618  			return false
   619  		}
   620  	}
   621  
   622  	// Digits
   623  	switch {
   624  	default:
   625  		return false
   626  
   627  	case s[0] == '0':
   628  		s = s[1:]
   629  
   630  	case '1' <= s[0] && s[0] <= '9':
   631  		s = s[1:]
   632  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   633  			s = s[1:]
   634  		}
   635  	}
   636  
   637  	// . followed by 1 or more digits.
   638  	if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' {
   639  		s = s[2:]
   640  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   641  			s = s[1:]
   642  		}
   643  	}
   644  
   645  	// e or E followed by an optional - or + and
   646  	// 1 or more digits.
   647  	if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
   648  		s = s[1:]
   649  		if s[0] == '+' || s[0] == '-' {
   650  			s = s[1:]
   651  			if s == "" {
   652  				return false
   653  			}
   654  		}
   655  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   656  			s = s[1:]
   657  		}
   658  	}
   659  
   660  	// Make sure we are at the end.
   661  	return s == ""
   662  }
   663  
   664  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   665  	if v.IsNil() {
   666  		e.WriteString("null")
   667  		return
   668  	}
   669  	e.reflectValue(v.Elem(), opts)
   670  }
   671  
   672  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   673  	e.error(&UnsupportedTypeError{v.Type()})
   674  }
   675  
   676  type structEncoder struct {
   677  	fields structFields
   678  }
   679  
   680  type structFields struct {
   681  	list         []field
   682  	byExactName  map[string]*field
   683  	byFoldedName map[string]*field
   684  }
   685  
   686  func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   687  	next := byte('{')
   688  FieldLoop:
   689  	for i := range se.fields.list {
   690  		f := &se.fields.list[i]
   691  
   692  		// Find the nested struct field by following f.index.
   693  		fv := v
   694  		for _, i := range f.index {
   695  			if fv.Kind() == reflect.Pointer {
   696  				if fv.IsNil() {
   697  					continue FieldLoop
   698  				}
   699  				fv = fv.Elem()
   700  			}
   701  			fv = fv.Field(i)
   702  		}
   703  
   704  		if f.omitEmpty && isEmptyValue(fv) {
   705  			continue
   706  		}
   707  		e.WriteByte(next)
   708  		next = ','
   709  		if opts.escapeHTML {
   710  			e.WriteString(f.nameEscHTML)
   711  		} else {
   712  			e.WriteString(f.nameNonEsc)
   713  		}
   714  		opts.quoted = f.quoted
   715  		f.encoder(e, fv, opts)
   716  	}
   717  	if next == '{' {
   718  		e.WriteString("{}")
   719  	} else {
   720  		e.WriteByte('}')
   721  	}
   722  }
   723  
   724  func newStructEncoder(t reflect.Type) encoderFunc {
   725  	se := structEncoder{fields: cachedTypeFields(t)}
   726  	return se.encode
   727  }
   728  
   729  type mapEncoder struct {
   730  	elemEnc encoderFunc
   731  }
   732  
   733  func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   734  	if v.IsNil() {
   735  		e.WriteString("null")
   736  		return
   737  	}
   738  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   739  		// We're a large number of nested ptrEncoder.encode calls deep;
   740  		// start checking if we've run into a pointer cycle.
   741  		ptr := v.UnsafePointer()
   742  		if _, ok := e.ptrSeen[ptr]; ok {
   743  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   744  		}
   745  		e.ptrSeen[ptr] = struct{}{}
   746  		defer delete(e.ptrSeen, ptr)
   747  	}
   748  	e.WriteByte('{')
   749  
   750  	// Extract and sort the keys.
   751  	var (
   752  		sv  = make([]reflectWithString, v.Len())
   753  		mi  = v.MapRange()
   754  		err error
   755  	)
   756  	for i := 0; mi.Next(); i++ {
   757  		if sv[i].ks, err = resolveKeyName(mi.Key()); err != nil {
   758  			e.error(fmt.Errorf("json: encoding error for type %q: %q", v.Type().String(), err.Error()))
   759  		}
   760  		sv[i].v = mi.Value()
   761  	}
   762  	slices.SortFunc(sv, func(i, j reflectWithString) int {
   763  		return strings.Compare(i.ks, j.ks)
   764  	})
   765  
   766  	for i, kv := range sv {
   767  		if i > 0 {
   768  			e.WriteByte(',')
   769  		}
   770  		e.Write(appendString(e.AvailableBuffer(), kv.ks, opts.escapeHTML))
   771  		e.WriteByte(':')
   772  		me.elemEnc(e, kv.v, opts)
   773  	}
   774  	e.WriteByte('}')
   775  	e.ptrLevel--
   776  }
   777  
   778  func newMapEncoder(t reflect.Type) encoderFunc {
   779  	switch t.Key().Kind() {
   780  	case reflect.String,
   781  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   782  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   783  	default:
   784  		if !t.Key().Implements(textMarshalerType) {
   785  			return unsupportedTypeEncoder
   786  		}
   787  	}
   788  	me := mapEncoder{typeEncoder(t.Elem())}
   789  	return me.encode
   790  }
   791  
   792  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   793  	if v.IsNil() {
   794  		e.WriteString("null")
   795  		return
   796  	}
   797  
   798  	s := v.Bytes()
   799  	b := e.AvailableBuffer()
   800  	b = append(b, '"')
   801  	b = base64.StdEncoding.AppendEncode(b, s)
   802  	b = append(b, '"')
   803  	e.Write(b)
   804  }
   805  
   806  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   807  type sliceEncoder struct {
   808  	arrayEnc encoderFunc
   809  }
   810  
   811  func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   812  	if v.IsNil() {
   813  		e.WriteString("null")
   814  		return
   815  	}
   816  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   817  		// We're a large number of nested ptrEncoder.encode calls deep;
   818  		// start checking if we've run into a pointer cycle.
   819  		// Here we use a struct to memorize the pointer to the first element of the slice
   820  		// and its length.
   821  		ptr := struct {
   822  			ptr interface{} // always an unsafe.Pointer, but avoids a dependency on package unsafe
   823  			len int
   824  		}{v.UnsafePointer(), v.Len()}
   825  		if _, ok := e.ptrSeen[ptr]; ok {
   826  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   827  		}
   828  		e.ptrSeen[ptr] = struct{}{}
   829  		defer delete(e.ptrSeen, ptr)
   830  	}
   831  	se.arrayEnc(e, v, opts)
   832  	e.ptrLevel--
   833  }
   834  
   835  func newSliceEncoder(t reflect.Type) encoderFunc {
   836  	// Byte slices get special treatment; arrays don't.
   837  	if t.Elem().Kind() == reflect.Uint8 {
   838  		p := reflect.PointerTo(t.Elem())
   839  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   840  			return encodeByteSlice
   841  		}
   842  	}
   843  	enc := sliceEncoder{newArrayEncoder(t)}
   844  	return enc.encode
   845  }
   846  
   847  type arrayEncoder struct {
   848  	elemEnc encoderFunc
   849  }
   850  
   851  func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   852  	e.WriteByte('[')
   853  	n := v.Len()
   854  	for i := 0; i < n; i++ {
   855  		if i > 0 {
   856  			e.WriteByte(',')
   857  		}
   858  		ae.elemEnc(e, v.Index(i), opts)
   859  	}
   860  	e.WriteByte(']')
   861  }
   862  
   863  func newArrayEncoder(t reflect.Type) encoderFunc {
   864  	enc := arrayEncoder{typeEncoder(t.Elem())}
   865  	return enc.encode
   866  }
   867  
   868  type ptrEncoder struct {
   869  	elemEnc encoderFunc
   870  }
   871  
   872  func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   873  	if v.IsNil() {
   874  		e.WriteString("null")
   875  		return
   876  	}
   877  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   878  		// We're a large number of nested ptrEncoder.encode calls deep;
   879  		// start checking if we've run into a pointer cycle.
   880  		ptr := v.Interface()
   881  		if _, ok := e.ptrSeen[ptr]; ok {
   882  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   883  		}
   884  		e.ptrSeen[ptr] = struct{}{}
   885  		defer delete(e.ptrSeen, ptr)
   886  	}
   887  	pe.elemEnc(e, v.Elem(), opts)
   888  	e.ptrLevel--
   889  }
   890  
   891  func newPtrEncoder(t reflect.Type) encoderFunc {
   892  	enc := ptrEncoder{typeEncoder(t.Elem())}
   893  	return enc.encode
   894  }
   895  
   896  type condAddrEncoder struct {
   897  	canAddrEnc, elseEnc encoderFunc
   898  }
   899  
   900  func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   901  	if v.CanAddr() {
   902  		ce.canAddrEnc(e, v, opts)
   903  	} else {
   904  		ce.elseEnc(e, v, opts)
   905  	}
   906  }
   907  
   908  // newCondAddrEncoder returns an encoder that checks whether its value
   909  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   910  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   911  	enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   912  	return enc.encode
   913  }
   914  
   915  func isValidTag(s string) bool {
   916  	if s == "" {
   917  		return false
   918  	}
   919  	for _, c := range s {
   920  		switch {
   921  		case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
   922  			// Backslash and quote chars are reserved, but
   923  			// otherwise any punctuation chars are allowed
   924  			// in a tag name.
   925  		case !unicode.IsLetter(c) && !unicode.IsDigit(c):
   926  			return false
   927  		}
   928  	}
   929  	return true
   930  }
   931  
   932  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   933  	for _, i := range index {
   934  		if t.Kind() == reflect.Pointer {
   935  			t = t.Elem()
   936  		}
   937  		t = t.Field(i).Type
   938  	}
   939  	return t
   940  }
   941  
   942  type reflectWithString struct {
   943  	v  reflect.Value
   944  	ks string
   945  }
   946  
   947  func resolveKeyName(k reflect.Value) (string, error) {
   948  	if k.Kind() == reflect.String {
   949  		return k.String(), nil
   950  	}
   951  	if tm, ok := k.Interface().(encoding.TextMarshaler); ok {
   952  		if k.Kind() == reflect.Pointer && k.IsNil() {
   953  			return "", nil
   954  		}
   955  		buf, err := tm.MarshalText()
   956  		return string(buf), err
   957  	}
   958  	switch k.Kind() {
   959  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   960  		return strconv.FormatInt(k.Int(), 10), nil
   961  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   962  		return strconv.FormatUint(k.Uint(), 10), nil
   963  	}
   964  	panic("unexpected map key type")
   965  }
   966  
   967  func appendString[Bytes []byte | string](dst []byte, src Bytes, escapeHTML bool) []byte {
   968  	dst = append(dst, '"')
   969  	start := 0
   970  	for i := 0; i < len(src); {
   971  		if b := src[i]; b < utf8.RuneSelf {
   972  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
   973  				i++
   974  				continue
   975  			}
   976  			dst = append(dst, src[start:i]...)
   977  			switch b {
   978  			case '\\', '"':
   979  				dst = append(dst, '\\', b)
   980  			case '\b':
   981  				dst = append(dst, '\\', 'b')
   982  			case '\f':
   983  				dst = append(dst, '\\', 'f')
   984  			case '\n':
   985  				dst = append(dst, '\\', 'n')
   986  			case '\r':
   987  				dst = append(dst, '\\', 'r')
   988  			case '\t':
   989  				dst = append(dst, '\\', 't')
   990  			default:
   991  				// This encodes bytes < 0x20 except for \b, \f, \n, \r and \t.
   992  				// If escapeHTML is set, it also escapes <, >, and &
   993  				// because they can lead to security holes when
   994  				// user-controlled strings are rendered into JSON
   995  				// and served to some browsers.
   996  				dst = append(dst, '\\', 'u', '0', '0', hex[b>>4], hex[b&0xF])
   997  			}
   998  			i++
   999  			start = i
  1000  			continue
  1001  		}
  1002  		// TODO(https://go.dev/issue/56948): Use generic utf8 functionality.
  1003  		// For now, cast only a small portion of byte slices to a string
  1004  		// so that it can be stack allocated. This slows down []byte slightly
  1005  		// due to the extra copy, but keeps string performance roughly the same.
  1006  		n := len(src) - i
  1007  		if n > utf8.UTFMax {
  1008  			n = utf8.UTFMax
  1009  		}
  1010  		c, size := utf8.DecodeRuneInString(string(src[i : i+n]))
  1011  		if c == utf8.RuneError && size == 1 {
  1012  			dst = append(dst, src[start:i]...)
  1013  			dst = append(dst, `\ufffd`...)
  1014  			i += size
  1015  			start = i
  1016  			continue
  1017  		}
  1018  		// U+2028 is LINE SEPARATOR.
  1019  		// U+2029 is PARAGRAPH SEPARATOR.
  1020  		// They are both technically valid characters in JSON strings,
  1021  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1022  		// and can lead to security holes there. It is valid JSON to
  1023  		// escape them, so we do so unconditionally.
  1024  		// See https://en.wikipedia.org/wiki/JSON#Safety.
  1025  		if c == '\u2028' || c == '\u2029' {
  1026  			dst = append(dst, src[start:i]...)
  1027  			dst = append(dst, '\\', 'u', '2', '0', '2', hex[c&0xF])
  1028  			i += size
  1029  			start = i
  1030  			continue
  1031  		}
  1032  		i += size
  1033  	}
  1034  	dst = append(dst, src[start:]...)
  1035  	dst = append(dst, '"')
  1036  	return dst
  1037  }
  1038  
  1039  // A field represents a single field found in a struct.
  1040  type field struct {
  1041  	name      string
  1042  	nameBytes []byte // []byte(name)
  1043  
  1044  	nameNonEsc  string // `"` + name + `":`
  1045  	nameEscHTML string // `"` + HTMLEscape(name) + `":`
  1046  
  1047  	tag       bool
  1048  	index     []int
  1049  	typ       reflect.Type
  1050  	omitEmpty bool
  1051  	quoted    bool
  1052  
  1053  	encoder encoderFunc
  1054  }
  1055  
  1056  // typeFields returns a list of fields that JSON should recognize for the given type.
  1057  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1058  // and then any reachable anonymous structs.
  1059  //
  1060  // typeFields should be an internal detail,
  1061  // but widely used packages access it using linkname.
  1062  // Notable members of the hall of shame include:
  1063  //   - github.com/bytedance/sonic
  1064  //
  1065  // Do not remove or change the type signature.
  1066  // See go.dev/issue/67401.
  1067  //
  1068  //go:linkname typeFields
  1069  func typeFields(t reflect.Type) structFields {
  1070  	// Anonymous fields to explore at the current level and the next.
  1071  	current := []field{}
  1072  	next := []field{{typ: t}}
  1073  
  1074  	// Count of queued names for current level and the next.
  1075  	var count, nextCount map[reflect.Type]int
  1076  
  1077  	// Types already visited at an earlier level.
  1078  	visited := map[reflect.Type]bool{}
  1079  
  1080  	// Fields found.
  1081  	var fields []field
  1082  
  1083  	// Buffer to run appendHTMLEscape on field names.
  1084  	var nameEscBuf []byte
  1085  
  1086  	for len(next) > 0 {
  1087  		current, next = next, current[:0]
  1088  		count, nextCount = nextCount, map[reflect.Type]int{}
  1089  
  1090  		for _, f := range current {
  1091  			if visited[f.typ] {
  1092  				continue
  1093  			}
  1094  			visited[f.typ] = true
  1095  
  1096  			// Scan f.typ for fields to include.
  1097  			for i := 0; i < f.typ.NumField(); i++ {
  1098  				sf := f.typ.Field(i)
  1099  				if sf.Anonymous {
  1100  					t := sf.Type
  1101  					if t.Kind() == reflect.Pointer {
  1102  						t = t.Elem()
  1103  					}
  1104  					if !sf.IsExported() && t.Kind() != reflect.Struct {
  1105  						// Ignore embedded fields of unexported non-struct types.
  1106  						continue
  1107  					}
  1108  					// Do not ignore embedded fields of unexported struct types
  1109  					// since they may have exported fields.
  1110  				} else if !sf.IsExported() {
  1111  					// Ignore unexported non-embedded fields.
  1112  					continue
  1113  				}
  1114  				tag := sf.Tag.Get("json")
  1115  				if tag == "-" {
  1116  					continue
  1117  				}
  1118  				name, opts := parseTag(tag)
  1119  				if !isValidTag(name) {
  1120  					name = ""
  1121  				}
  1122  				index := make([]int, len(f.index)+1)
  1123  				copy(index, f.index)
  1124  				index[len(f.index)] = i
  1125  
  1126  				ft := sf.Type
  1127  				if ft.Name() == "" && ft.Kind() == reflect.Pointer {
  1128  					// Follow pointer.
  1129  					ft = ft.Elem()
  1130  				}
  1131  
  1132  				// Only strings, floats, integers, and booleans can be quoted.
  1133  				quoted := false
  1134  				if opts.Contains("string") {
  1135  					switch ft.Kind() {
  1136  					case reflect.Bool,
  1137  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1138  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
  1139  						reflect.Float32, reflect.Float64,
  1140  						reflect.String:
  1141  						quoted = true
  1142  					}
  1143  				}
  1144  
  1145  				// Record found field and index sequence.
  1146  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1147  					tagged := name != ""
  1148  					if name == "" {
  1149  						name = sf.Name
  1150  					}
  1151  					field := field{
  1152  						name:      name,
  1153  						tag:       tagged,
  1154  						index:     index,
  1155  						typ:       ft,
  1156  						omitEmpty: opts.Contains("omitempty"),
  1157  						quoted:    quoted,
  1158  					}
  1159  					field.nameBytes = []byte(field.name)
  1160  
  1161  					// Build nameEscHTML and nameNonEsc ahead of time.
  1162  					nameEscBuf = appendHTMLEscape(nameEscBuf[:0], field.nameBytes)
  1163  					field.nameEscHTML = `"` + string(nameEscBuf) + `":`
  1164  					field.nameNonEsc = `"` + field.name + `":`
  1165  
  1166  					fields = append(fields, field)
  1167  					if count[f.typ] > 1 {
  1168  						// If there were multiple instances, add a second,
  1169  						// so that the annihilation code will see a duplicate.
  1170  						// It only cares about the distinction between 1 and 2,
  1171  						// so don't bother generating any more copies.
  1172  						fields = append(fields, fields[len(fields)-1])
  1173  					}
  1174  					continue
  1175  				}
  1176  
  1177  				// Record new anonymous struct to explore in next round.
  1178  				nextCount[ft]++
  1179  				if nextCount[ft] == 1 {
  1180  					next = append(next, field{name: ft.Name(), index: index, typ: ft})
  1181  				}
  1182  			}
  1183  		}
  1184  	}
  1185  
  1186  	slices.SortFunc(fields, func(a, b field) int {
  1187  		// sort field by name, breaking ties with depth, then
  1188  		// breaking ties with "name came from json tag", then
  1189  		// breaking ties with index sequence.
  1190  		if c := strings.Compare(a.name, b.name); c != 0 {
  1191  			return c
  1192  		}
  1193  		if c := cmp.Compare(len(a.index), len(b.index)); c != 0 {
  1194  			return c
  1195  		}
  1196  		if a.tag != b.tag {
  1197  			if a.tag {
  1198  				return -1
  1199  			}
  1200  			return +1
  1201  		}
  1202  		return slices.Compare(a.index, b.index)
  1203  	})
  1204  
  1205  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1206  	// except that fields with JSON tags are promoted.
  1207  
  1208  	// The fields are sorted in primary order of name, secondary order
  1209  	// of field index length. Loop over names; for each name, delete
  1210  	// hidden fields by choosing the one dominant field that survives.
  1211  	out := fields[:0]
  1212  	for advance, i := 0, 0; i < len(fields); i += advance {
  1213  		// One iteration per name.
  1214  		// Find the sequence of fields with the name of this first field.
  1215  		fi := fields[i]
  1216  		name := fi.name
  1217  		for advance = 1; i+advance < len(fields); advance++ {
  1218  			fj := fields[i+advance]
  1219  			if fj.name != name {
  1220  				break
  1221  			}
  1222  		}
  1223  		if advance == 1 { // Only one field with this name
  1224  			out = append(out, fi)
  1225  			continue
  1226  		}
  1227  		dominant, ok := dominantField(fields[i : i+advance])
  1228  		if ok {
  1229  			out = append(out, dominant)
  1230  		}
  1231  	}
  1232  
  1233  	fields = out
  1234  	slices.SortFunc(fields, func(i, j field) int {
  1235  		return slices.Compare(i.index, j.index)
  1236  	})
  1237  
  1238  	for i := range fields {
  1239  		f := &fields[i]
  1240  		f.encoder = typeEncoder(typeByIndex(t, f.index))
  1241  	}
  1242  	exactNameIndex := make(map[string]*field, len(fields))
  1243  	foldedNameIndex := make(map[string]*field, len(fields))
  1244  	for i, field := range fields {
  1245  		exactNameIndex[field.name] = &fields[i]
  1246  		// For historical reasons, first folded match takes precedence.
  1247  		if _, ok := foldedNameIndex[string(foldName(field.nameBytes))]; !ok {
  1248  			foldedNameIndex[string(foldName(field.nameBytes))] = &fields[i]
  1249  		}
  1250  	}
  1251  	return structFields{fields, exactNameIndex, foldedNameIndex}
  1252  }
  1253  
  1254  // dominantField looks through the fields, all of which are known to
  1255  // have the same name, to find the single field that dominates the
  1256  // others using Go's embedding rules, modified by the presence of
  1257  // JSON tags. If there are multiple top-level fields, the boolean
  1258  // will be false: This condition is an error in Go and we skip all
  1259  // the fields.
  1260  func dominantField(fields []field) (field, bool) {
  1261  	// The fields are sorted in increasing index-length order, then by presence of tag.
  1262  	// That means that the first field is the dominant one. We need only check
  1263  	// for error cases: two fields at top level, either both tagged or neither tagged.
  1264  	if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
  1265  		return field{}, false
  1266  	}
  1267  	return fields[0], true
  1268  }
  1269  
  1270  var fieldCache sync.Map // map[reflect.Type]structFields
  1271  
  1272  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1273  func cachedTypeFields(t reflect.Type) structFields {
  1274  	if f, ok := fieldCache.Load(t); ok {
  1275  		return f.(structFields)
  1276  	}
  1277  	f, _ := fieldCache.LoadOrStore(t, typeFields(t))
  1278  	return f.(structFields)
  1279  }
  1280  
  1281  func mayAppendQuote(b []byte, quoted bool) []byte {
  1282  	if quoted {
  1283  		b = append(b, '"')
  1284  	}
  1285  	return b
  1286  }
  1287  

View as plain text