Source file
src/math/rand/rand_test.go
1
2
3
4
5 package rand_test
6
7 import (
8 "bytes"
9 "errors"
10 "fmt"
11 "internal/testenv"
12 "io"
13 "math"
14 . "math/rand"
15 "os"
16 "runtime"
17 "strings"
18 "sync"
19 "testing"
20 "testing/iotest"
21 )
22
23 const (
24 numTestSamples = 10000
25 )
26
27 var rn, kn, wn, fn = GetNormalDistributionParameters()
28 var re, ke, we, fe = GetExponentialDistributionParameters()
29
30 type statsResults struct {
31 mean float64
32 stddev float64
33 closeEnough float64
34 maxError float64
35 }
36
37 func nearEqual(a, b, closeEnough, maxError float64) bool {
38 absDiff := math.Abs(a - b)
39 if absDiff < closeEnough {
40 return true
41 }
42 return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
43 }
44
45 var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
46
47
48
49 func (sr *statsResults) checkSimilarDistribution(expected *statsResults) error {
50 if !nearEqual(sr.mean, expected.mean, expected.closeEnough, expected.maxError) {
51 s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", sr.mean, expected.mean, expected.closeEnough, expected.maxError)
52 fmt.Println(s)
53 return errors.New(s)
54 }
55 if !nearEqual(sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
56 s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", sr.stddev, expected.stddev, expected.closeEnough, expected.maxError)
57 fmt.Println(s)
58 return errors.New(s)
59 }
60 return nil
61 }
62
63 func getStatsResults(samples []float64) *statsResults {
64 res := new(statsResults)
65 var sum, squaresum float64
66 for _, s := range samples {
67 sum += s
68 squaresum += s * s
69 }
70 res.mean = sum / float64(len(samples))
71 res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
72 return res
73 }
74
75 func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
76 t.Helper()
77 actual := getStatsResults(samples)
78 err := actual.checkSimilarDistribution(expected)
79 if err != nil {
80 t.Error(err)
81 }
82 }
83
84 func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
85 t.Helper()
86 chunk := len(samples) / nslices
87 for i := 0; i < nslices; i++ {
88 low := i * chunk
89 var high int
90 if i == nslices-1 {
91 high = len(samples) - 1
92 } else {
93 high = (i + 1) * chunk
94 }
95 checkSampleDistribution(t, samples[low:high], expected)
96 }
97 }
98
99
100
101
102
103 func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
104 r := New(NewSource(seed))
105 samples := make([]float64, nsamples)
106 for i := range samples {
107 samples[i] = r.NormFloat64()*stddev + mean
108 }
109 return samples
110 }
111
112 func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
113
114
115 samples := generateNormalSamples(nsamples, mean, stddev, seed)
116 errorScale := max(1.0, stddev)
117 expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
118
119
120 checkSampleDistribution(t, samples, expected)
121
122
123 checkSampleSliceDistributions(t, samples, 2, expected)
124
125
126 checkSampleSliceDistributions(t, samples, 7, expected)
127 }
128
129
130
131 func TestStandardNormalValues(t *testing.T) {
132 for _, seed := range testSeeds {
133 testNormalDistribution(t, numTestSamples, 0, 1, seed)
134 }
135 }
136
137 func TestNonStandardNormalValues(t *testing.T) {
138 sdmax := 1000.0
139 mmax := 1000.0
140 if testing.Short() {
141 sdmax = 5
142 mmax = 5
143 }
144 for sd := 0.5; sd < sdmax; sd *= 2 {
145 for m := 0.5; m < mmax; m *= 2 {
146 for _, seed := range testSeeds {
147 testNormalDistribution(t, numTestSamples, m, sd, seed)
148 if testing.Short() {
149 break
150 }
151 }
152 }
153 }
154 }
155
156
157
158
159
160 func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
161 r := New(NewSource(seed))
162 samples := make([]float64, nsamples)
163 for i := range samples {
164 samples[i] = r.ExpFloat64() / rate
165 }
166 return samples
167 }
168
169 func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
170
171
172 mean := 1 / rate
173 stddev := mean
174
175 samples := generateExponentialSamples(nsamples, rate, seed)
176 errorScale := max(1.0, 1/rate)
177 expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
178
179
180 checkSampleDistribution(t, samples, expected)
181
182
183 checkSampleSliceDistributions(t, samples, 2, expected)
184
185
186 checkSampleSliceDistributions(t, samples, 7, expected)
187 }
188
189
190
191 func TestStandardExponentialValues(t *testing.T) {
192 for _, seed := range testSeeds {
193 testExponentialDistribution(t, numTestSamples, 1, seed)
194 }
195 }
196
197 func TestNonStandardExponentialValues(t *testing.T) {
198 for rate := 0.05; rate < 10; rate *= 2 {
199 for _, seed := range testSeeds {
200 testExponentialDistribution(t, numTestSamples, rate, seed)
201 if testing.Short() {
202 break
203 }
204 }
205 }
206 }
207
208
209
210
211
212 func initNorm() (testKn []uint32, testWn, testFn []float32) {
213 const m1 = 1 << 31
214 var (
215 dn float64 = rn
216 tn = dn
217 vn float64 = 9.91256303526217e-3
218 )
219
220 testKn = make([]uint32, 128)
221 testWn = make([]float32, 128)
222 testFn = make([]float32, 128)
223
224 q := vn / math.Exp(-0.5*dn*dn)
225 testKn[0] = uint32((dn / q) * m1)
226 testKn[1] = 0
227 testWn[0] = float32(q / m1)
228 testWn[127] = float32(dn / m1)
229 testFn[0] = 1.0
230 testFn[127] = float32(math.Exp(-0.5 * dn * dn))
231 for i := 126; i >= 1; i-- {
232 dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
233 testKn[i+1] = uint32((dn / tn) * m1)
234 tn = dn
235 testFn[i] = float32(math.Exp(-0.5 * dn * dn))
236 testWn[i] = float32(dn / m1)
237 }
238 return
239 }
240
241 func initExp() (testKe []uint32, testWe, testFe []float32) {
242 const m2 = 1 << 32
243 var (
244 de float64 = re
245 te = de
246 ve float64 = 3.9496598225815571993e-3
247 )
248
249 testKe = make([]uint32, 256)
250 testWe = make([]float32, 256)
251 testFe = make([]float32, 256)
252
253 q := ve / math.Exp(-de)
254 testKe[0] = uint32((de / q) * m2)
255 testKe[1] = 0
256 testWe[0] = float32(q / m2)
257 testWe[255] = float32(de / m2)
258 testFe[0] = 1.0
259 testFe[255] = float32(math.Exp(-de))
260 for i := 254; i >= 1; i-- {
261 de = -math.Log(ve/de + math.Exp(-de))
262 testKe[i+1] = uint32((de / te) * m2)
263 te = de
264 testFe[i] = float32(math.Exp(-de))
265 testWe[i] = float32(de / m2)
266 }
267 return
268 }
269
270
271
272
273 func compareUint32Slices(s1, s2 []uint32) int {
274 if len(s1) != len(s2) {
275 if len(s1) > len(s2) {
276 return len(s2) + 1
277 }
278 return len(s1) + 1
279 }
280 for i := range s1 {
281 if s1[i] != s2[i] {
282 return i
283 }
284 }
285 return -1
286 }
287
288
289
290
291 func compareFloat32Slices(s1, s2 []float32) int {
292 if len(s1) != len(s2) {
293 if len(s1) > len(s2) {
294 return len(s2) + 1
295 }
296 return len(s1) + 1
297 }
298 for i := range s1 {
299 if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
300 return i
301 }
302 }
303 return -1
304 }
305
306 func TestNormTables(t *testing.T) {
307 testKn, testWn, testFn := initNorm()
308 if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
309 t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
310 }
311 if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
312 t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
313 }
314 if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
315 t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
316 }
317 }
318
319 func TestExpTables(t *testing.T) {
320 testKe, testWe, testFe := initExp()
321 if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
322 t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
323 }
324 if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
325 t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
326 }
327 if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
328 t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
329 }
330 }
331
332 func hasSlowFloatingPoint() bool {
333 switch runtime.GOARCH {
334 case "arm":
335 return os.Getenv("GOARM") == "5" || strings.HasSuffix(os.Getenv("GOARM"), ",softfloat")
336 case "mips", "mipsle", "mips64", "mips64le":
337
338
339
340 return true
341 }
342 return false
343 }
344
345 func TestFloat32(t *testing.T) {
346
347 num := int(10e6)
348
349
350
351 if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) {
352 num /= 100
353 }
354
355 r := New(NewSource(1))
356 for ct := 0; ct < num; ct++ {
357 f := r.Float32()
358 if f >= 1 {
359 t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
360 }
361 }
362 }
363
364 func testReadUniformity(t *testing.T, n int, seed int64) {
365 r := New(NewSource(seed))
366 buf := make([]byte, n)
367 nRead, err := r.Read(buf)
368 if err != nil {
369 t.Errorf("Read err %v", err)
370 }
371 if nRead != n {
372 t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
373 }
374
375
376 var (
377 mean = 255.0 / 2
378 stddev = 256.0 / math.Sqrt(12.0)
379 errorScale = stddev / math.Sqrt(float64(n))
380 )
381
382 expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
383
384
385 samples := make([]float64, n)
386 for i, val := range buf {
387 samples[i] = float64(val)
388 }
389
390 checkSampleDistribution(t, samples, expected)
391 }
392
393 func TestReadUniformity(t *testing.T) {
394 testBufferSizes := []int{
395 2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
396 }
397 for _, seed := range testSeeds {
398 for _, n := range testBufferSizes {
399 testReadUniformity(t, n, seed)
400 }
401 }
402 }
403
404 func TestReadEmpty(t *testing.T) {
405 r := New(NewSource(1))
406 buf := make([]byte, 0)
407 n, err := r.Read(buf)
408 if err != nil {
409 t.Errorf("Read err into empty buffer; %v", err)
410 }
411 if n != 0 {
412 t.Errorf("Read into empty buffer returned unexpected n of %d", n)
413 }
414 }
415
416 func TestReadByOneByte(t *testing.T) {
417 r := New(NewSource(1))
418 b1 := make([]byte, 100)
419 _, err := io.ReadFull(iotest.OneByteReader(r), b1)
420 if err != nil {
421 t.Errorf("read by one byte: %v", err)
422 }
423 r = New(NewSource(1))
424 b2 := make([]byte, 100)
425 _, err = r.Read(b2)
426 if err != nil {
427 t.Errorf("read: %v", err)
428 }
429 if !bytes.Equal(b1, b2) {
430 t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
431 }
432 }
433
434 func TestReadSeedReset(t *testing.T) {
435 r := New(NewSource(42))
436 b1 := make([]byte, 128)
437 _, err := r.Read(b1)
438 if err != nil {
439 t.Errorf("read: %v", err)
440 }
441 r.Seed(42)
442 b2 := make([]byte, 128)
443 _, err = r.Read(b2)
444 if err != nil {
445 t.Errorf("read: %v", err)
446 }
447 if !bytes.Equal(b1, b2) {
448 t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
449 }
450 }
451
452 func TestShuffleSmall(t *testing.T) {
453
454 r := New(NewSource(1))
455 for n := 0; n <= 1; n++ {
456 r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
457 }
458 }
459
460
461
462
463 func encodePerm(s []int) int {
464
465 for i, x := range s {
466 r := s[i+1:]
467 for j, y := range r {
468 if y > x {
469 r[j]--
470 }
471 }
472 }
473
474 m := 0
475 fact := 1
476 for i := len(s) - 1; i >= 0; i-- {
477 m += s[i] * fact
478 fact *= len(s) - i
479 }
480 return m
481 }
482
483
484 func TestUniformFactorial(t *testing.T) {
485 r := New(NewSource(testSeeds[0]))
486 top := 6
487 if testing.Short() {
488 top = 3
489 }
490 for n := 3; n <= top; n++ {
491 t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) {
492
493 nfact := 1
494 for i := 2; i <= n; i++ {
495 nfact *= i
496 }
497
498
499 p := make([]int, n)
500 tests := [...]struct {
501 name string
502 fn func() int
503 }{
504 {name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }},
505 {name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }},
506 {name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }},
507 {name: "Shuffle", fn: func() int {
508
509 for i := range p {
510 p[i] = i
511 }
512 r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] })
513 return encodePerm(p)
514 }},
515 }
516
517 for _, test := range tests {
518 t.Run(test.name, func(t *testing.T) {
519
520
521
522
523 nsamples := 10 * nfact
524 if nsamples < 200 {
525 nsamples = 200
526 }
527 samples := make([]float64, nsamples)
528 for i := range samples {
529
530 const iters = 1000
531 counts := make([]int, nfact)
532 for i := 0; i < iters; i++ {
533 counts[test.fn()]++
534 }
535
536 want := iters / float64(nfact)
537 var χ2 float64
538 for _, have := range counts {
539 err := float64(have) - want
540 χ2 += err * err
541 }
542 χ2 /= want
543 samples[i] = χ2
544 }
545
546
547 dof := float64(nfact - 1)
548 expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)}
549 errorScale := max(1.0, expected.stddev)
550 expected.closeEnough = 0.10 * errorScale
551 expected.maxError = 0.08
552 checkSampleDistribution(t, samples, expected)
553 })
554 }
555 })
556 }
557 }
558
559
560
561 func BenchmarkInt63Threadsafe(b *testing.B) {
562 for n := b.N; n > 0; n-- {
563 Int63()
564 }
565 }
566
567 func BenchmarkInt63ThreadsafeParallel(b *testing.B) {
568 b.RunParallel(func(pb *testing.PB) {
569 for pb.Next() {
570 Int63()
571 }
572 })
573 }
574
575 func BenchmarkInt63Unthreadsafe(b *testing.B) {
576 r := New(NewSource(1))
577 for n := b.N; n > 0; n-- {
578 r.Int63()
579 }
580 }
581
582 func BenchmarkIntn1000(b *testing.B) {
583 r := New(NewSource(1))
584 for n := b.N; n > 0; n-- {
585 r.Intn(1000)
586 }
587 }
588
589 func BenchmarkInt63n1000(b *testing.B) {
590 r := New(NewSource(1))
591 for n := b.N; n > 0; n-- {
592 r.Int63n(1000)
593 }
594 }
595
596 func BenchmarkInt31n1000(b *testing.B) {
597 r := New(NewSource(1))
598 for n := b.N; n > 0; n-- {
599 r.Int31n(1000)
600 }
601 }
602
603 func BenchmarkFloat32(b *testing.B) {
604 r := New(NewSource(1))
605 for n := b.N; n > 0; n-- {
606 r.Float32()
607 }
608 }
609
610 func BenchmarkFloat64(b *testing.B) {
611 r := New(NewSource(1))
612 for n := b.N; n > 0; n-- {
613 r.Float64()
614 }
615 }
616
617 func BenchmarkPerm3(b *testing.B) {
618 r := New(NewSource(1))
619 for n := b.N; n > 0; n-- {
620 r.Perm(3)
621 }
622 }
623
624 func BenchmarkPerm30(b *testing.B) {
625 r := New(NewSource(1))
626 for n := b.N; n > 0; n-- {
627 r.Perm(30)
628 }
629 }
630
631 func BenchmarkPerm30ViaShuffle(b *testing.B) {
632 r := New(NewSource(1))
633 for n := b.N; n > 0; n-- {
634 p := make([]int, 30)
635 for i := range p {
636 p[i] = i
637 }
638 r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] })
639 }
640 }
641
642
643
644 func BenchmarkShuffleOverhead(b *testing.B) {
645 r := New(NewSource(1))
646 for n := b.N; n > 0; n-- {
647 r.Shuffle(52, func(i, j int) {
648 if i < 0 || i >= 52 || j < 0 || j >= 52 {
649 b.Fatalf("bad swap(%d, %d)", i, j)
650 }
651 })
652 }
653 }
654
655 func BenchmarkRead3(b *testing.B) {
656 r := New(NewSource(1))
657 buf := make([]byte, 3)
658 b.ResetTimer()
659 for n := b.N; n > 0; n-- {
660 r.Read(buf)
661 }
662 }
663
664 func BenchmarkRead64(b *testing.B) {
665 r := New(NewSource(1))
666 buf := make([]byte, 64)
667 b.ResetTimer()
668 for n := b.N; n > 0; n-- {
669 r.Read(buf)
670 }
671 }
672
673 func BenchmarkRead1000(b *testing.B) {
674 r := New(NewSource(1))
675 buf := make([]byte, 1000)
676 b.ResetTimer()
677 for n := b.N; n > 0; n-- {
678 r.Read(buf)
679 }
680 }
681
682 func BenchmarkConcurrent(b *testing.B) {
683 const goroutines = 4
684 var wg sync.WaitGroup
685 wg.Add(goroutines)
686 for i := 0; i < goroutines; i++ {
687 go func() {
688 defer wg.Done()
689 for n := b.N; n > 0; n-- {
690 Int63()
691 }
692 }()
693 }
694 wg.Wait()
695 }
696
View as plain text