// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package image implements a basic 2-D image library.
//
// The fundamental interface is called [Image]. An [Image] contains colors, which
// are described in the image/color package.
//
// Values of the [Image] interface are created either by calling functions such
// as [NewRGBA] and [NewPaletted], or by calling [Decode] on an [io.Reader] containing
// image data in a format such as GIF, JPEG or PNG. Decoding any particular
// image format requires the prior registration of a decoder function.
// Registration is typically automatic as a side effect of initializing that
// format's package so that, to decode a PNG image, it suffices to have
//
//	import _ "image/png"
//
// in a program's main package. The _ means to import a package purely for its
// initialization side effects.
//
// See "The Go image package" for more details:
// https://golang.org/doc/articles/image_package.html
//
// # Security Considerations
//
// The image package can be used to parse arbitrarily large images, which can
// cause resource exhaustion on machines which do not have enough memory to
// store them. When operating on arbitrary images, [DecodeConfig] should be called
// before [Decode], so that the program can decide whether the image, as defined
// in the returned header, can be safely decoded with the available resources. A
// call to [Decode] which produces an extremely large image, as defined in the
// header returned by [DecodeConfig], is not considered a security issue,
// regardless of whether the image is itself malformed or not. A call to
// [DecodeConfig] which returns a header which does not match the image returned
// by [Decode] may be considered a security issue, and should be reported per the
// [Go Security Policy](https://go.dev/security/policy).
package image

import (
	"image/color"
)

// Config holds an image's color model and dimensions.
type Config struct {
	ColorModel    color.Model
	Width, Height int
}

// Image is a finite rectangular grid of [color.Color] values taken from a color
// model.
type Image interface {
	// ColorModel returns the Image's color model.
	ColorModel() color.Model
	// Bounds returns the domain for which At can return non-zero color.
	// The bounds do not necessarily contain the point (0, 0).
	Bounds() Rectangle
	// At returns the color of the pixel at (x, y).
	// At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
	// At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
	At(x, y int) color.Color
}

// RGBA64Image is an [Image] whose pixels can be converted directly to a
// color.RGBA64.
type RGBA64Image interface {
	// RGBA64At returns the RGBA64 color of the pixel at (x, y). It is
	// equivalent to calling At(x, y).RGBA() and converting the resulting
	// 32-bit return values to a color.RGBA64, but it can avoid allocations
	// from converting concrete color types to the color.Color interface type.
	RGBA64At(x, y int) color.RGBA64
	Image
}

// PalettedImage is an image whose colors may come from a limited palette.
// If m is a PalettedImage and m.ColorModel() returns a [color.Palette] p,
// then m.At(x, y) should be equivalent to p[m.ColorIndexAt(x, y)]. If m's
// color model is not a color.Palette, then ColorIndexAt's behavior is
// undefined.
type PalettedImage interface {
	// ColorIndexAt returns the palette index of the pixel at (x, y).
	ColorIndexAt(x, y int) uint8
	Image
}

// pixelBufferLength returns the length of the []uint8 typed Pix slice field
// for the NewXxx functions. Conceptually, this is just (bpp * width * height),
// but this function panics if at least one of those is negative or if the
// computation would overflow the int type.
//
// This panics instead of returning an error because of backwards
// compatibility. The NewXxx functions do not return an error.
func pixelBufferLength(bytesPerPixel int, r Rectangle, imageTypeName string) int {
	totalLength := mul3NonNeg(bytesPerPixel, r.Dx(), r.Dy())
	if totalLength < 0 {
		panic("image: New" + imageTypeName + " Rectangle has huge or negative dimensions")
	}
	return totalLength
}

// RGBA is an in-memory image whose At method returns [color.RGBA] values.
type RGBA struct {
	// Pix holds the image's pixels, in R, G, B, A order. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *RGBA) ColorModel() color.Model { return color.RGBAModel }

func (p *RGBA) Bounds() Rectangle { return p.Rect }

func (p *RGBA) At(x, y int) color.Color {
	return p.RGBAAt(x, y)
}

func (p *RGBA) RGBA64At(x, y int) color.RGBA64 {
	if !(Point{x, y}.In(p.Rect)) {
		return color.RGBA64{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	r := uint16(s[0])
	g := uint16(s[1])
	b := uint16(s[2])
	a := uint16(s[3])
	return color.RGBA64{
		(r << 8) | r,
		(g << 8) | g,
		(b << 8) | b,
		(a << 8) | a,
	}
}

func (p *RGBA) RGBAAt(x, y int) color.RGBA {
	if !(Point{x, y}.In(p.Rect)) {
		return color.RGBA{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	return color.RGBA{s[0], s[1], s[2], s[3]}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *RGBA) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
}

func (p *RGBA) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.RGBAModel.Convert(c).(color.RGBA)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c1.R
	s[1] = c1.G
	s[2] = c1.B
	s[3] = c1.A
}

func (p *RGBA) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(c.R >> 8)
	s[1] = uint8(c.G >> 8)
	s[2] = uint8(c.B >> 8)
	s[3] = uint8(c.A >> 8)
}

func (p *RGBA) SetRGBA(x, y int, c color.RGBA) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c.R
	s[1] = c.G
	s[2] = c.B
	s[3] = c.A
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *RGBA) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &RGBA{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &RGBA{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *RGBA) Opaque() bool {
	if p.Rect.Empty() {
		return true
	}
	i0, i1 := 3, p.Rect.Dx()*4
	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
		for i := i0; i < i1; i += 4 {
			if p.Pix[i] != 0xff {
				return false
			}
		}
		i0 += p.Stride
		i1 += p.Stride
	}
	return true
}

// NewRGBA returns a new [RGBA] image with the given bounds.
func NewRGBA(r Rectangle) *RGBA {
	return &RGBA{
		Pix:    make([]uint8, pixelBufferLength(4, r, "RGBA")),
		Stride: 4 * r.Dx(),
		Rect:   r,
	}
}

// RGBA64 is an in-memory image whose At method returns [color.RGBA64] values.
type RGBA64 struct {
	// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *RGBA64) ColorModel() color.Model { return color.RGBA64Model }

func (p *RGBA64) Bounds() Rectangle { return p.Rect }

func (p *RGBA64) At(x, y int) color.Color {
	return p.RGBA64At(x, y)
}

func (p *RGBA64) RGBA64At(x, y int) color.RGBA64 {
	if !(Point{x, y}.In(p.Rect)) {
		return color.RGBA64{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
	return color.RGBA64{
		uint16(s[0])<<8 | uint16(s[1]),
		uint16(s[2])<<8 | uint16(s[3]),
		uint16(s[4])<<8 | uint16(s[5]),
		uint16(s[6])<<8 | uint16(s[7]),
	}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *RGBA64) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
}

func (p *RGBA64) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.RGBA64Model.Convert(c).(color.RGBA64)
	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(c1.R >> 8)
	s[1] = uint8(c1.R)
	s[2] = uint8(c1.G >> 8)
	s[3] = uint8(c1.G)
	s[4] = uint8(c1.B >> 8)
	s[5] = uint8(c1.B)
	s[6] = uint8(c1.A >> 8)
	s[7] = uint8(c1.A)
}

func (p *RGBA64) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(c.R >> 8)
	s[1] = uint8(c.R)
	s[2] = uint8(c.G >> 8)
	s[3] = uint8(c.G)
	s[4] = uint8(c.B >> 8)
	s[5] = uint8(c.B)
	s[6] = uint8(c.A >> 8)
	s[7] = uint8(c.A)
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *RGBA64) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &RGBA64{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &RGBA64{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *RGBA64) Opaque() bool {
	if p.Rect.Empty() {
		return true
	}
	i0, i1 := 6, p.Rect.Dx()*8
	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
		for i := i0; i < i1; i += 8 {
			if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
				return false
			}
		}
		i0 += p.Stride
		i1 += p.Stride
	}
	return true
}

// NewRGBA64 returns a new [RGBA64] image with the given bounds.
func NewRGBA64(r Rectangle) *RGBA64 {
	return &RGBA64{
		Pix:    make([]uint8, pixelBufferLength(8, r, "RGBA64")),
		Stride: 8 * r.Dx(),
		Rect:   r,
	}
}

// NRGBA is an in-memory image whose At method returns [color.NRGBA] values.
type NRGBA struct {
	// Pix holds the image's pixels, in R, G, B, A order. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *NRGBA) ColorModel() color.Model { return color.NRGBAModel }

func (p *NRGBA) Bounds() Rectangle { return p.Rect }

func (p *NRGBA) At(x, y int) color.Color {
	return p.NRGBAAt(x, y)
}

func (p *NRGBA) RGBA64At(x, y int) color.RGBA64 {
	r, g, b, a := p.NRGBAAt(x, y).RGBA()
	return color.RGBA64{uint16(r), uint16(g), uint16(b), uint16(a)}
}

func (p *NRGBA) NRGBAAt(x, y int) color.NRGBA {
	if !(Point{x, y}.In(p.Rect)) {
		return color.NRGBA{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	return color.NRGBA{s[0], s[1], s[2], s[3]}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *NRGBA) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
}

func (p *NRGBA) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c1.R
	s[1] = c1.G
	s[2] = c1.B
	s[3] = c1.A
}

func (p *NRGBA) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	r, g, b, a := uint32(c.R), uint32(c.G), uint32(c.B), uint32(c.A)
	if (a != 0) && (a != 0xffff) {
		r = (r * 0xffff) / a
		g = (g * 0xffff) / a
		b = (b * 0xffff) / a
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(r >> 8)
	s[1] = uint8(g >> 8)
	s[2] = uint8(b >> 8)
	s[3] = uint8(a >> 8)
}

func (p *NRGBA) SetNRGBA(x, y int, c color.NRGBA) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c.R
	s[1] = c.G
	s[2] = c.B
	s[3] = c.A
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *NRGBA) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &NRGBA{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &NRGBA{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *NRGBA) Opaque() bool {
	if p.Rect.Empty() {
		return true
	}
	i0, i1 := 3, p.Rect.Dx()*4
	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
		for i := i0; i < i1; i += 4 {
			if p.Pix[i] != 0xff {
				return false
			}
		}
		i0 += p.Stride
		i1 += p.Stride
	}
	return true
}

// NewNRGBA returns a new [NRGBA] image with the given bounds.
func NewNRGBA(r Rectangle) *NRGBA {
	return &NRGBA{
		Pix:    make([]uint8, pixelBufferLength(4, r, "NRGBA")),
		Stride: 4 * r.Dx(),
		Rect:   r,
	}
}

// NRGBA64 is an in-memory image whose At method returns [color.NRGBA64] values.
type NRGBA64 struct {
	// Pix holds the image's pixels, in R, G, B, A order and big-endian format. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*8].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *NRGBA64) ColorModel() color.Model { return color.NRGBA64Model }

func (p *NRGBA64) Bounds() Rectangle { return p.Rect }

func (p *NRGBA64) At(x, y int) color.Color {
	return p.NRGBA64At(x, y)
}

func (p *NRGBA64) RGBA64At(x, y int) color.RGBA64 {
	r, g, b, a := p.NRGBA64At(x, y).RGBA()
	return color.RGBA64{uint16(r), uint16(g), uint16(b), uint16(a)}
}

func (p *NRGBA64) NRGBA64At(x, y int) color.NRGBA64 {
	if !(Point{x, y}.In(p.Rect)) {
		return color.NRGBA64{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
	return color.NRGBA64{
		uint16(s[0])<<8 | uint16(s[1]),
		uint16(s[2])<<8 | uint16(s[3]),
		uint16(s[4])<<8 | uint16(s[5]),
		uint16(s[6])<<8 | uint16(s[7]),
	}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *NRGBA64) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*8
}

func (p *NRGBA64) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.NRGBA64Model.Convert(c).(color.NRGBA64)
	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(c1.R >> 8)
	s[1] = uint8(c1.R)
	s[2] = uint8(c1.G >> 8)
	s[3] = uint8(c1.G)
	s[4] = uint8(c1.B >> 8)
	s[5] = uint8(c1.B)
	s[6] = uint8(c1.A >> 8)
	s[7] = uint8(c1.A)
}

func (p *NRGBA64) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	r, g, b, a := uint32(c.R), uint32(c.G), uint32(c.B), uint32(c.A)
	if (a != 0) && (a != 0xffff) {
		r = (r * 0xffff) / a
		g = (g * 0xffff) / a
		b = (b * 0xffff) / a
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(r >> 8)
	s[1] = uint8(r)
	s[2] = uint8(g >> 8)
	s[3] = uint8(g)
	s[4] = uint8(b >> 8)
	s[5] = uint8(b)
	s[6] = uint8(a >> 8)
	s[7] = uint8(a)
}

func (p *NRGBA64) SetNRGBA64(x, y int, c color.NRGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+8 : i+8] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(c.R >> 8)
	s[1] = uint8(c.R)
	s[2] = uint8(c.G >> 8)
	s[3] = uint8(c.G)
	s[4] = uint8(c.B >> 8)
	s[5] = uint8(c.B)
	s[6] = uint8(c.A >> 8)
	s[7] = uint8(c.A)
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *NRGBA64) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &NRGBA64{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &NRGBA64{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *NRGBA64) Opaque() bool {
	if p.Rect.Empty() {
		return true
	}
	i0, i1 := 6, p.Rect.Dx()*8
	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
		for i := i0; i < i1; i += 8 {
			if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
				return false
			}
		}
		i0 += p.Stride
		i1 += p.Stride
	}
	return true
}

// NewNRGBA64 returns a new [NRGBA64] image with the given bounds.
func NewNRGBA64(r Rectangle) *NRGBA64 {
	return &NRGBA64{
		Pix:    make([]uint8, pixelBufferLength(8, r, "NRGBA64")),
		Stride: 8 * r.Dx(),
		Rect:   r,
	}
}

// Alpha is an in-memory image whose At method returns [color.Alpha] values.
type Alpha struct {
	// Pix holds the image's pixels, as alpha values. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *Alpha) ColorModel() color.Model { return color.AlphaModel }

func (p *Alpha) Bounds() Rectangle { return p.Rect }

func (p *Alpha) At(x, y int) color.Color {
	return p.AlphaAt(x, y)
}

func (p *Alpha) RGBA64At(x, y int) color.RGBA64 {
	a := uint16(p.AlphaAt(x, y).A)
	a |= a << 8
	return color.RGBA64{a, a, a, a}
}

func (p *Alpha) AlphaAt(x, y int) color.Alpha {
	if !(Point{x, y}.In(p.Rect)) {
		return color.Alpha{}
	}
	i := p.PixOffset(x, y)
	return color.Alpha{p.Pix[i]}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *Alpha) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
}

func (p *Alpha) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = color.AlphaModel.Convert(c).(color.Alpha).A
}

func (p *Alpha) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = uint8(c.A >> 8)
}

func (p *Alpha) SetAlpha(x, y int, c color.Alpha) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = c.A
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *Alpha) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &Alpha{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &Alpha{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *Alpha) Opaque() bool {
	if p.Rect.Empty() {
		return true
	}
	i0, i1 := 0, p.Rect.Dx()
	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
		for i := i0; i < i1; i++ {
			if p.Pix[i] != 0xff {
				return false
			}
		}
		i0 += p.Stride
		i1 += p.Stride
	}
	return true
}

// NewAlpha returns a new [Alpha] image with the given bounds.
func NewAlpha(r Rectangle) *Alpha {
	return &Alpha{
		Pix:    make([]uint8, pixelBufferLength(1, r, "Alpha")),
		Stride: 1 * r.Dx(),
		Rect:   r,
	}
}

// Alpha16 is an in-memory image whose At method returns [color.Alpha16] values.
type Alpha16 struct {
	// Pix holds the image's pixels, as alpha values in big-endian format. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *Alpha16) ColorModel() color.Model { return color.Alpha16Model }

func (p *Alpha16) Bounds() Rectangle { return p.Rect }

func (p *Alpha16) At(x, y int) color.Color {
	return p.Alpha16At(x, y)
}

func (p *Alpha16) RGBA64At(x, y int) color.RGBA64 {
	a := p.Alpha16At(x, y).A
	return color.RGBA64{a, a, a, a}
}

func (p *Alpha16) Alpha16At(x, y int) color.Alpha16 {
	if !(Point{x, y}.In(p.Rect)) {
		return color.Alpha16{}
	}
	i := p.PixOffset(x, y)
	return color.Alpha16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *Alpha16) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
}

func (p *Alpha16) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.Alpha16Model.Convert(c).(color.Alpha16)
	p.Pix[i+0] = uint8(c1.A >> 8)
	p.Pix[i+1] = uint8(c1.A)
}

func (p *Alpha16) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i+0] = uint8(c.A >> 8)
	p.Pix[i+1] = uint8(c.A)
}

func (p *Alpha16) SetAlpha16(x, y int, c color.Alpha16) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i+0] = uint8(c.A >> 8)
	p.Pix[i+1] = uint8(c.A)
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *Alpha16) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &Alpha16{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &Alpha16{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *Alpha16) Opaque() bool {
	if p.Rect.Empty() {
		return true
	}
	i0, i1 := 0, p.Rect.Dx()*2
	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
		for i := i0; i < i1; i += 2 {
			if p.Pix[i+0] != 0xff || p.Pix[i+1] != 0xff {
				return false
			}
		}
		i0 += p.Stride
		i1 += p.Stride
	}
	return true
}

// NewAlpha16 returns a new [Alpha16] image with the given bounds.
func NewAlpha16(r Rectangle) *Alpha16 {
	return &Alpha16{
		Pix:    make([]uint8, pixelBufferLength(2, r, "Alpha16")),
		Stride: 2 * r.Dx(),
		Rect:   r,
	}
}

// Gray is an in-memory image whose At method returns [color.Gray] values.
type Gray struct {
	// Pix holds the image's pixels, as gray values. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *Gray) ColorModel() color.Model { return color.GrayModel }

func (p *Gray) Bounds() Rectangle { return p.Rect }

func (p *Gray) At(x, y int) color.Color {
	return p.GrayAt(x, y)
}

func (p *Gray) RGBA64At(x, y int) color.RGBA64 {
	gray := uint16(p.GrayAt(x, y).Y)
	gray |= gray << 8
	return color.RGBA64{gray, gray, gray, 0xffff}
}

func (p *Gray) GrayAt(x, y int) color.Gray {
	if !(Point{x, y}.In(p.Rect)) {
		return color.Gray{}
	}
	i := p.PixOffset(x, y)
	return color.Gray{p.Pix[i]}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *Gray) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
}

func (p *Gray) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = color.GrayModel.Convert(c).(color.Gray).Y
}

func (p *Gray) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	// This formula is the same as in color.grayModel.
	gray := (19595*uint32(c.R) + 38470*uint32(c.G) + 7471*uint32(c.B) + 1<<15) >> 24
	i := p.PixOffset(x, y)
	p.Pix[i] = uint8(gray)
}

func (p *Gray) SetGray(x, y int, c color.Gray) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = c.Y
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *Gray) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &Gray{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &Gray{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *Gray) Opaque() bool {
	return true
}

// NewGray returns a new [Gray] image with the given bounds.
func NewGray(r Rectangle) *Gray {
	return &Gray{
		Pix:    make([]uint8, pixelBufferLength(1, r, "Gray")),
		Stride: 1 * r.Dx(),
		Rect:   r,
	}
}

// Gray16 is an in-memory image whose At method returns [color.Gray16] values.
type Gray16 struct {
	// Pix holds the image's pixels, as gray values in big-endian format. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*2].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *Gray16) ColorModel() color.Model { return color.Gray16Model }

func (p *Gray16) Bounds() Rectangle { return p.Rect }

func (p *Gray16) At(x, y int) color.Color {
	return p.Gray16At(x, y)
}

func (p *Gray16) RGBA64At(x, y int) color.RGBA64 {
	gray := p.Gray16At(x, y).Y
	return color.RGBA64{gray, gray, gray, 0xffff}
}

func (p *Gray16) Gray16At(x, y int) color.Gray16 {
	if !(Point{x, y}.In(p.Rect)) {
		return color.Gray16{}
	}
	i := p.PixOffset(x, y)
	return color.Gray16{uint16(p.Pix[i+0])<<8 | uint16(p.Pix[i+1])}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *Gray16) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*2
}

func (p *Gray16) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.Gray16Model.Convert(c).(color.Gray16)
	p.Pix[i+0] = uint8(c1.Y >> 8)
	p.Pix[i+1] = uint8(c1.Y)
}

func (p *Gray16) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	// This formula is the same as in color.gray16Model.
	gray := (19595*uint32(c.R) + 38470*uint32(c.G) + 7471*uint32(c.B) + 1<<15) >> 16
	i := p.PixOffset(x, y)
	p.Pix[i+0] = uint8(gray >> 8)
	p.Pix[i+1] = uint8(gray)
}

func (p *Gray16) SetGray16(x, y int, c color.Gray16) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i+0] = uint8(c.Y >> 8)
	p.Pix[i+1] = uint8(c.Y)
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *Gray16) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &Gray16{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &Gray16{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *Gray16) Opaque() bool {
	return true
}

// NewGray16 returns a new [Gray16] image with the given bounds.
func NewGray16(r Rectangle) *Gray16 {
	return &Gray16{
		Pix:    make([]uint8, pixelBufferLength(2, r, "Gray16")),
		Stride: 2 * r.Dx(),
		Rect:   r,
	}
}

// CMYK is an in-memory image whose At method returns [color.CMYK] values.
type CMYK struct {
	// Pix holds the image's pixels, in C, M, Y, K order. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
}

func (p *CMYK) ColorModel() color.Model { return color.CMYKModel }

func (p *CMYK) Bounds() Rectangle { return p.Rect }

func (p *CMYK) At(x, y int) color.Color {
	return p.CMYKAt(x, y)
}

func (p *CMYK) RGBA64At(x, y int) color.RGBA64 {
	r, g, b, a := p.CMYKAt(x, y).RGBA()
	return color.RGBA64{uint16(r), uint16(g), uint16(b), uint16(a)}
}

func (p *CMYK) CMYKAt(x, y int) color.CMYK {
	if !(Point{x, y}.In(p.Rect)) {
		return color.CMYK{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	return color.CMYK{s[0], s[1], s[2], s[3]}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *CMYK) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
}

func (p *CMYK) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.CMYKModel.Convert(c).(color.CMYK)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c1.C
	s[1] = c1.M
	s[2] = c1.Y
	s[3] = c1.K
}

func (p *CMYK) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	cc, mm, yy, kk := color.RGBToCMYK(uint8(c.R>>8), uint8(c.G>>8), uint8(c.B>>8))
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = cc
	s[1] = mm
	s[2] = yy
	s[3] = kk
}

func (p *CMYK) SetCMYK(x, y int, c color.CMYK) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c.C
	s[1] = c.M
	s[2] = c.Y
	s[3] = c.K
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *CMYK) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &CMYK{}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &CMYK{
		Pix:    p.Pix[i:],
		Stride: p.Stride,
		Rect:   r,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *CMYK) Opaque() bool {
	return true
}

// NewCMYK returns a new CMYK image with the given bounds.
func NewCMYK(r Rectangle) *CMYK {
	return &CMYK{
		Pix:    make([]uint8, pixelBufferLength(4, r, "CMYK")),
		Stride: 4 * r.Dx(),
		Rect:   r,
	}
}

// Paletted is an in-memory image of uint8 indices into a given palette.
type Paletted struct {
	// Pix holds the image's pixels, as palette indices. The pixel at
	// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*1].
	Pix []uint8
	// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
	Stride int
	// Rect is the image's bounds.
	Rect Rectangle
	// Palette is the image's palette.
	Palette color.Palette
}

func (p *Paletted) ColorModel() color.Model { return p.Palette }

func (p *Paletted) Bounds() Rectangle { return p.Rect }

func (p *Paletted) At(x, y int) color.Color {
	if len(p.Palette) == 0 {
		return nil
	}
	if !(Point{x, y}.In(p.Rect)) {
		return p.Palette[0]
	}
	i := p.PixOffset(x, y)
	return p.Palette[p.Pix[i]]
}

func (p *Paletted) RGBA64At(x, y int) color.RGBA64 {
	if len(p.Palette) == 0 {
		return color.RGBA64{}
	}
	c := color.Color(nil)
	if !(Point{x, y}.In(p.Rect)) {
		c = p.Palette[0]
	} else {
		i := p.PixOffset(x, y)
		c = p.Palette[p.Pix[i]]
	}
	r, g, b, a := c.RGBA()
	return color.RGBA64{
		uint16(r),
		uint16(g),
		uint16(b),
		uint16(a),
	}
}

// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *Paletted) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*1
}

func (p *Paletted) Set(x, y int, c color.Color) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = uint8(p.Palette.Index(c))
}

func (p *Paletted) SetRGBA64(x, y int, c color.RGBA64) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = uint8(p.Palette.Index(c))
}

func (p *Paletted) ColorIndexAt(x, y int) uint8 {
	if !(Point{x, y}.In(p.Rect)) {
		return 0
	}
	i := p.PixOffset(x, y)
	return p.Pix[i]
}

func (p *Paletted) SetColorIndex(x, y int, index uint8) {
	if !(Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	p.Pix[i] = index
}

// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *Paletted) SubImage(r Rectangle) Image {
	r = r.Intersect(p.Rect)
	// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
	// either r1 or r2 if the intersection is empty. Without explicitly checking for
	// this, the Pix[i:] expression below can panic.
	if r.Empty() {
		return &Paletted{
			Palette: p.Palette,
		}
	}
	i := p.PixOffset(r.Min.X, r.Min.Y)
	return &Paletted{
		Pix:     p.Pix[i:],
		Stride:  p.Stride,
		Rect:    p.Rect.Intersect(r),
		Palette: p.Palette,
	}
}

// Opaque scans the entire image and reports whether it is fully opaque.
func (p *Paletted) Opaque() bool {
	var present [256]bool
	i0, i1 := 0, p.Rect.Dx()
	for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ {
		for _, c := range p.Pix[i0:i1] {
			present[c] = true
		}
		i0 += p.Stride
		i1 += p.Stride
	}
	for i, c := range p.Palette {
		if !present[i] {
			continue
		}
		_, _, _, a := c.RGBA()
		if a != 0xffff {
			return false
		}
	}
	return true
}

// NewPaletted returns a new [Paletted] image with the given width, height and
// palette.
func NewPaletted(r Rectangle, p color.Palette) *Paletted {
	return &Paletted{
		Pix:     make([]uint8, pixelBufferLength(1, r, "Paletted")),
		Stride:  1 * r.Dx(),
		Rect:    r,
		Palette: p,
	}
}