Source file src/go/types/index.go

     1  // Copyright 2021 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements typechecking of index/slice expressions.
     6  
     7  package types
     8  
     9  import (
    10  	"go/ast"
    11  	"go/constant"
    12  	"go/internal/typeparams"
    13  	. "internal/types/errors"
    14  )
    15  
    16  // If e is a valid function instantiation, indexExpr returns true.
    17  // In that case x represents the uninstantiated function value and
    18  // it is the caller's responsibility to instantiate the function.
    19  func (check *Checker) indexExpr(x *operand, e *typeparams.IndexExpr) (isFuncInst bool) {
    20  	check.exprOrType(x, e.X, true)
    21  	// x may be generic
    22  
    23  	switch x.mode {
    24  	case invalid:
    25  		check.use(e.Indices...)
    26  		return false
    27  
    28  	case typexpr:
    29  		// type instantiation
    30  		x.mode = invalid
    31  		// TODO(gri) here we re-evaluate e.X - try to avoid this
    32  		x.typ = check.varType(e.Orig)
    33  		if isValid(x.typ) {
    34  			x.mode = typexpr
    35  		}
    36  		return false
    37  
    38  	case value:
    39  		if sig, _ := under(x.typ).(*Signature); sig != nil && sig.TypeParams().Len() > 0 {
    40  			// function instantiation
    41  			return true
    42  		}
    43  	}
    44  
    45  	// x should not be generic at this point, but be safe and check
    46  	check.nonGeneric(nil, x)
    47  	if x.mode == invalid {
    48  		return false
    49  	}
    50  
    51  	// ordinary index expression
    52  	valid := false
    53  	length := int64(-1) // valid if >= 0
    54  	switch typ := under(x.typ).(type) {
    55  	case *Basic:
    56  		if isString(typ) {
    57  			valid = true
    58  			if x.mode == constant_ {
    59  				length = int64(len(constant.StringVal(x.val)))
    60  			}
    61  			// an indexed string always yields a byte value
    62  			// (not a constant) even if the string and the
    63  			// index are constant
    64  			x.mode = value
    65  			x.typ = universeByte // use 'byte' name
    66  		}
    67  
    68  	case *Array:
    69  		valid = true
    70  		length = typ.len
    71  		if x.mode != variable {
    72  			x.mode = value
    73  		}
    74  		x.typ = typ.elem
    75  
    76  	case *Pointer:
    77  		if typ, _ := under(typ.base).(*Array); typ != nil {
    78  			valid = true
    79  			length = typ.len
    80  			x.mode = variable
    81  			x.typ = typ.elem
    82  		}
    83  
    84  	case *Slice:
    85  		valid = true
    86  		x.mode = variable
    87  		x.typ = typ.elem
    88  
    89  	case *Map:
    90  		index := check.singleIndex(e)
    91  		if index == nil {
    92  			x.mode = invalid
    93  			return false
    94  		}
    95  		var key operand
    96  		check.expr(nil, &key, index)
    97  		check.assignment(&key, typ.key, "map index")
    98  		// ok to continue even if indexing failed - map element type is known
    99  		x.mode = mapindex
   100  		x.typ = typ.elem
   101  		x.expr = e.Orig
   102  		return false
   103  
   104  	case *Interface:
   105  		if !isTypeParam(x.typ) {
   106  			break
   107  		}
   108  		// TODO(gri) report detailed failure cause for better error messages
   109  		var key, elem Type // key != nil: we must have all maps
   110  		mode := variable   // non-maps result mode
   111  		// TODO(gri) factor out closure and use it for non-typeparam cases as well
   112  		if typ.typeSet().underIs(func(u Type) bool {
   113  			l := int64(-1) // valid if >= 0
   114  			var k, e Type  // k is only set for maps
   115  			switch t := u.(type) {
   116  			case *Basic:
   117  				if isString(t) {
   118  					e = universeByte
   119  					mode = value
   120  				}
   121  			case *Array:
   122  				l = t.len
   123  				e = t.elem
   124  				if x.mode != variable {
   125  					mode = value
   126  				}
   127  			case *Pointer:
   128  				if t, _ := under(t.base).(*Array); t != nil {
   129  					l = t.len
   130  					e = t.elem
   131  				}
   132  			case *Slice:
   133  				e = t.elem
   134  			case *Map:
   135  				k = t.key
   136  				e = t.elem
   137  			}
   138  			if e == nil {
   139  				return false
   140  			}
   141  			if elem == nil {
   142  				// first type
   143  				length = l
   144  				key, elem = k, e
   145  				return true
   146  			}
   147  			// all map keys must be identical (incl. all nil)
   148  			// (that is, we cannot mix maps with other types)
   149  			if !Identical(key, k) {
   150  				return false
   151  			}
   152  			// all element types must be identical
   153  			if !Identical(elem, e) {
   154  				return false
   155  			}
   156  			// track the minimal length for arrays, if any
   157  			if l >= 0 && l < length {
   158  				length = l
   159  			}
   160  			return true
   161  		}) {
   162  			// For maps, the index expression must be assignable to the map key type.
   163  			if key != nil {
   164  				index := check.singleIndex(e)
   165  				if index == nil {
   166  					x.mode = invalid
   167  					return false
   168  				}
   169  				var k operand
   170  				check.expr(nil, &k, index)
   171  				check.assignment(&k, key, "map index")
   172  				// ok to continue even if indexing failed - map element type is known
   173  				x.mode = mapindex
   174  				x.typ = elem
   175  				x.expr = e
   176  				return false
   177  			}
   178  
   179  			// no maps
   180  			valid = true
   181  			x.mode = mode
   182  			x.typ = elem
   183  		}
   184  	}
   185  
   186  	if !valid {
   187  		// types2 uses the position of '[' for the error
   188  		check.errorf(x, NonIndexableOperand, invalidOp+"cannot index %s", x)
   189  		check.use(e.Indices...)
   190  		x.mode = invalid
   191  		return false
   192  	}
   193  
   194  	index := check.singleIndex(e)
   195  	if index == nil {
   196  		x.mode = invalid
   197  		return false
   198  	}
   199  
   200  	// In pathological (invalid) cases (e.g.: type T1 [][[]T1{}[0][0]]T0)
   201  	// the element type may be accessed before it's set. Make sure we have
   202  	// a valid type.
   203  	if x.typ == nil {
   204  		x.typ = Typ[Invalid]
   205  	}
   206  
   207  	check.index(index, length)
   208  	return false
   209  }
   210  
   211  func (check *Checker) sliceExpr(x *operand, e *ast.SliceExpr) {
   212  	check.expr(nil, x, e.X)
   213  	if x.mode == invalid {
   214  		check.use(e.Low, e.High, e.Max)
   215  		return
   216  	}
   217  
   218  	valid := false
   219  	length := int64(-1) // valid if >= 0
   220  	switch u := coreString(x.typ).(type) {
   221  	case nil:
   222  		check.errorf(x, NonSliceableOperand, invalidOp+"cannot slice %s: %s has no core type", x, x.typ)
   223  		x.mode = invalid
   224  		return
   225  
   226  	case *Basic:
   227  		if isString(u) {
   228  			if e.Slice3 {
   229  				at := e.Max
   230  				if at == nil {
   231  					at = e // e.Index[2] should be present but be careful
   232  				}
   233  				check.error(at, InvalidSliceExpr, invalidOp+"3-index slice of string")
   234  				x.mode = invalid
   235  				return
   236  			}
   237  			valid = true
   238  			if x.mode == constant_ {
   239  				length = int64(len(constant.StringVal(x.val)))
   240  			}
   241  			// spec: "For untyped string operands the result
   242  			// is a non-constant value of type string."
   243  			if isUntyped(x.typ) {
   244  				x.typ = Typ[String]
   245  			}
   246  		}
   247  
   248  	case *Array:
   249  		valid = true
   250  		length = u.len
   251  		if x.mode != variable {
   252  			check.errorf(x, NonSliceableOperand, invalidOp+"cannot slice %s (value not addressable)", x)
   253  			x.mode = invalid
   254  			return
   255  		}
   256  		x.typ = &Slice{elem: u.elem}
   257  
   258  	case *Pointer:
   259  		if u, _ := under(u.base).(*Array); u != nil {
   260  			valid = true
   261  			length = u.len
   262  			x.typ = &Slice{elem: u.elem}
   263  		}
   264  
   265  	case *Slice:
   266  		valid = true
   267  		// x.typ doesn't change
   268  	}
   269  
   270  	if !valid {
   271  		check.errorf(x, NonSliceableOperand, invalidOp+"cannot slice %s", x)
   272  		x.mode = invalid
   273  		return
   274  	}
   275  
   276  	x.mode = value
   277  
   278  	// spec: "Only the first index may be omitted; it defaults to 0."
   279  	if e.Slice3 && (e.High == nil || e.Max == nil) {
   280  		check.error(inNode(e, e.Rbrack), InvalidSyntaxTree, "2nd and 3rd index required in 3-index slice")
   281  		x.mode = invalid
   282  		return
   283  	}
   284  
   285  	// check indices
   286  	var ind [3]int64
   287  	for i, expr := range []ast.Expr{e.Low, e.High, e.Max} {
   288  		x := int64(-1)
   289  		switch {
   290  		case expr != nil:
   291  			// The "capacity" is only known statically for strings, arrays,
   292  			// and pointers to arrays, and it is the same as the length for
   293  			// those types.
   294  			max := int64(-1)
   295  			if length >= 0 {
   296  				max = length + 1
   297  			}
   298  			if _, v := check.index(expr, max); v >= 0 {
   299  				x = v
   300  			}
   301  		case i == 0:
   302  			// default is 0 for the first index
   303  			x = 0
   304  		case length >= 0:
   305  			// default is length (== capacity) otherwise
   306  			x = length
   307  		}
   308  		ind[i] = x
   309  	}
   310  
   311  	// constant indices must be in range
   312  	// (check.index already checks that existing indices >= 0)
   313  L:
   314  	for i, x := range ind[:len(ind)-1] {
   315  		if x > 0 {
   316  			for j, y := range ind[i+1:] {
   317  				if y >= 0 && y < x {
   318  					// The value y corresponds to the expression e.Index[i+1+j].
   319  					// Because y >= 0, it must have been set from the expression
   320  					// when checking indices and thus e.Index[i+1+j] is not nil.
   321  					at := []ast.Expr{e.Low, e.High, e.Max}[i+1+j]
   322  					check.errorf(at, SwappedSliceIndices, "invalid slice indices: %d < %d", y, x)
   323  					break L // only report one error, ok to continue
   324  				}
   325  			}
   326  		}
   327  	}
   328  }
   329  
   330  // singleIndex returns the (single) index from the index expression e.
   331  // If the index is missing, or if there are multiple indices, an error
   332  // is reported and the result is nil.
   333  func (check *Checker) singleIndex(expr *typeparams.IndexExpr) ast.Expr {
   334  	if len(expr.Indices) == 0 {
   335  		check.errorf(expr.Orig, InvalidSyntaxTree, "index expression %v with 0 indices", expr)
   336  		return nil
   337  	}
   338  	if len(expr.Indices) > 1 {
   339  		// TODO(rFindley) should this get a distinct error code?
   340  		check.error(expr.Indices[1], InvalidIndex, invalidOp+"more than one index")
   341  	}
   342  	return expr.Indices[0]
   343  }
   344  
   345  // index checks an index expression for validity.
   346  // If max >= 0, it is the upper bound for index.
   347  // If the result typ is != Typ[Invalid], index is valid and typ is its (possibly named) integer type.
   348  // If the result val >= 0, index is valid and val is its constant int value.
   349  func (check *Checker) index(index ast.Expr, max int64) (typ Type, val int64) {
   350  	typ = Typ[Invalid]
   351  	val = -1
   352  
   353  	var x operand
   354  	check.expr(nil, &x, index)
   355  	if !check.isValidIndex(&x, InvalidIndex, "index", false) {
   356  		return
   357  	}
   358  
   359  	if x.mode != constant_ {
   360  		return x.typ, -1
   361  	}
   362  
   363  	if x.val.Kind() == constant.Unknown {
   364  		return
   365  	}
   366  
   367  	v, ok := constant.Int64Val(x.val)
   368  	assert(ok)
   369  	if max >= 0 && v >= max {
   370  		check.errorf(&x, InvalidIndex, invalidArg+"index %s out of bounds [0:%d]", x.val.String(), max)
   371  		return
   372  	}
   373  
   374  	// 0 <= v [ && v < max ]
   375  	return x.typ, v
   376  }
   377  
   378  func (check *Checker) isValidIndex(x *operand, code Code, what string, allowNegative bool) bool {
   379  	if x.mode == invalid {
   380  		return false
   381  	}
   382  
   383  	// spec: "a constant index that is untyped is given type int"
   384  	check.convertUntyped(x, Typ[Int])
   385  	if x.mode == invalid {
   386  		return false
   387  	}
   388  
   389  	// spec: "the index x must be of integer type or an untyped constant"
   390  	if !allInteger(x.typ) {
   391  		check.errorf(x, code, invalidArg+"%s %s must be integer", what, x)
   392  		return false
   393  	}
   394  
   395  	if x.mode == constant_ {
   396  		// spec: "a constant index must be non-negative ..."
   397  		if !allowNegative && constant.Sign(x.val) < 0 {
   398  			check.errorf(x, code, invalidArg+"%s %s must not be negative", what, x)
   399  			return false
   400  		}
   401  
   402  		// spec: "... and representable by a value of type int"
   403  		if !representableConst(x.val, check, Typ[Int], &x.val) {
   404  			check.errorf(x, code, invalidArg+"%s %s overflows int", what, x)
   405  			return false
   406  		}
   407  	}
   408  
   409  	return true
   410  }
   411  
   412  // indexedElts checks the elements (elts) of an array or slice composite literal
   413  // against the literal's element type (typ), and the element indices against
   414  // the literal length if known (length >= 0). It returns the length of the
   415  // literal (maximum index value + 1).
   416  func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 {
   417  	visited := make(map[int64]bool, len(elts))
   418  	var index, max int64
   419  	for _, e := range elts {
   420  		// determine and check index
   421  		validIndex := false
   422  		eval := e
   423  		if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
   424  			if typ, i := check.index(kv.Key, length); isValid(typ) {
   425  				if i >= 0 {
   426  					index = i
   427  					validIndex = true
   428  				} else {
   429  					check.errorf(e, InvalidLitIndex, "index %s must be integer constant", kv.Key)
   430  				}
   431  			}
   432  			eval = kv.Value
   433  		} else if length >= 0 && index >= length {
   434  			check.errorf(e, OversizeArrayLit, "index %d is out of bounds (>= %d)", index, length)
   435  		} else {
   436  			validIndex = true
   437  		}
   438  
   439  		// if we have a valid index, check for duplicate entries
   440  		if validIndex {
   441  			if visited[index] {
   442  				check.errorf(e, DuplicateLitKey, "duplicate index %d in array or slice literal", index)
   443  			}
   444  			visited[index] = true
   445  		}
   446  		index++
   447  		if index > max {
   448  			max = index
   449  		}
   450  
   451  		// check element against composite literal element type
   452  		var x operand
   453  		check.exprWithHint(&x, eval, typ)
   454  		check.assignment(&x, typ, "array or slice literal")
   455  	}
   456  	return max
   457  }
   458  

View as plain text