// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build amd64 || arm64 package nistec import "errors" // Montgomery multiplication modulo org(G). Sets res = in1 * in2 * R⁻¹. // //go:noescape func p256OrdMul(res, in1, in2 *p256OrdElement) // Montgomery square modulo org(G), repeated n times (n >= 1). // //go:noescape func p256OrdSqr(res, in *p256OrdElement, n int) func P256OrdInverse(k []byte) ([]byte, error) { if len(k) != 32 { return nil, errors.New("invalid scalar length") } x := new(p256OrdElement) p256OrdBigToLittle(x, (*[32]byte)(k)) p256OrdReduce(x) // Inversion is implemented as exponentiation by n - 2, per Fermat's little theorem. // // The sequence of 38 multiplications and 254 squarings is derived from // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion _1 := new(p256OrdElement) _11 := new(p256OrdElement) _101 := new(p256OrdElement) _111 := new(p256OrdElement) _1111 := new(p256OrdElement) _10101 := new(p256OrdElement) _101111 := new(p256OrdElement) t := new(p256OrdElement) // This code operates in the Montgomery domain where R = 2²⁵⁶ mod n and n is // the order of the scalar field. Elements in the Montgomery domain take the // form a×R and p256OrdMul calculates (a × b × R⁻¹) mod n. RR is R in the // domain, or R×R mod n, thus p256OrdMul(x, RR) gives x×R, i.e. converts x // into the Montgomery domain. RR := &p256OrdElement{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620} p256OrdMul(_1, x, RR) // _1 p256OrdSqr(x, _1, 1) // _10 p256OrdMul(_11, x, _1) // _11 p256OrdMul(_101, x, _11) // _101 p256OrdMul(_111, x, _101) // _111 p256OrdSqr(x, _101, 1) // _1010 p256OrdMul(_1111, _101, x) // _1111 p256OrdSqr(t, x, 1) // _10100 p256OrdMul(_10101, t, _1) // _10101 p256OrdSqr(x, _10101, 1) // _101010 p256OrdMul(_101111, _101, x) // _101111 p256OrdMul(x, _10101, x) // _111111 = x6 p256OrdSqr(t, x, 2) // _11111100 p256OrdMul(t, t, _11) // _11111111 = x8 p256OrdSqr(x, t, 8) // _ff00 p256OrdMul(x, x, t) // _ffff = x16 p256OrdSqr(t, x, 16) // _ffff0000 p256OrdMul(t, t, x) // _ffffffff = x32 p256OrdSqr(x, t, 64) p256OrdMul(x, x, t) p256OrdSqr(x, x, 32) p256OrdMul(x, x, t) sqrs := []int{ 6, 5, 4, 5, 5, 4, 3, 3, 5, 9, 6, 2, 5, 6, 5, 4, 5, 5, 3, 10, 2, 5, 5, 3, 7, 6} muls := []*p256OrdElement{ _101111, _111, _11, _1111, _10101, _101, _101, _101, _111, _101111, _1111, _1, _1, _1111, _111, _111, _111, _101, _11, _101111, _11, _11, _11, _1, _10101, _1111} for i, s := range sqrs { p256OrdSqr(x, x, s) p256OrdMul(x, x, muls[i]) } // Montgomery multiplication by R⁻¹, or 1 outside the domain as R⁻¹×R = 1, // converts a Montgomery value out of the domain. one := &p256OrdElement{1} p256OrdMul(x, x, one) var xOut [32]byte p256OrdLittleToBig(&xOut, x) return xOut[:], nil }