// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "bytes" "cmd/internal/cov/covcmd" "encoding/json" "flag" "fmt" "go/ast" "go/parser" "go/token" "internal/coverage" "internal/coverage/encodemeta" "internal/coverage/slicewriter" "io" "log" "os" "path/filepath" "sort" "strconv" "strings" "cmd/internal/edit" "cmd/internal/objabi" "cmd/internal/telemetry/counter" ) const usageMessage = "" + `Usage of 'go tool cover': Given a coverage profile produced by 'go test': go test -coverprofile=c.out Open a web browser displaying annotated source code: go tool cover -html=c.out Write out an HTML file instead of launching a web browser: go tool cover -html=c.out -o coverage.html Display coverage percentages to stdout for each function: go tool cover -func=c.out Finally, to generate modified source code with coverage annotations for a package (what go test -cover does): go tool cover -mode=set -var=CoverageVariableName \ -pkgcfg= -outfilelist= file1.go ... fileN.go where -pkgcfg points to a file containing the package path, package name, module path, and related info from "go build", and -outfilelist points to a file containing the filenames of the instrumented output files (one per input file). See https://pkg.go.dev/cmd/internal/cov/covcmd#CoverPkgConfig for more on the package config. ` func usage() { fmt.Fprint(os.Stderr, usageMessage) fmt.Fprintln(os.Stderr, "\nFlags:") flag.PrintDefaults() fmt.Fprintln(os.Stderr, "\n Only one of -html, -func, or -mode may be set.") os.Exit(2) } var ( mode = flag.String("mode", "", "coverage mode: set, count, atomic") varVar = flag.String("var", "GoCover", "name of coverage variable to generate") output = flag.String("o", "", "file for output") outfilelist = flag.String("outfilelist", "", "file containing list of output files (one per line) if -pkgcfg is in use") htmlOut = flag.String("html", "", "generate HTML representation of coverage profile") funcOut = flag.String("func", "", "output coverage profile information for each function") pkgcfg = flag.String("pkgcfg", "", "enable full-package instrumentation mode using params from specified config file") pkgconfig covcmd.CoverPkgConfig outputfiles []string // list of *.cover.go instrumented outputs to write, one per input (set when -pkgcfg is in use) profile string // The profile to read; the value of -html or -func counterStmt func(*File, string) string covervarsoutfile string // an additional Go source file into which we'll write definitions of coverage counter variables + meta data variables (set when -pkgcfg is in use). cmode coverage.CounterMode cgran coverage.CounterGranularity ) const ( atomicPackagePath = "sync/atomic" atomicPackageName = "_cover_atomic_" ) func main() { counter.Open() objabi.AddVersionFlag() flag.Usage = usage objabi.Flagparse(usage) counter.Inc("cover/invocations") counter.CountFlags("cover/flag:", *flag.CommandLine) // Usage information when no arguments. if flag.NFlag() == 0 && flag.NArg() == 0 { flag.Usage() } err := parseFlags() if err != nil { fmt.Fprintln(os.Stderr, err) fmt.Fprintln(os.Stderr, `For usage information, run "go tool cover -help"`) os.Exit(2) } // Generate coverage-annotated source. if *mode != "" { annotate(flag.Args()) return } // Output HTML or function coverage information. if *htmlOut != "" { err = htmlOutput(profile, *output) } else { err = funcOutput(profile, *output) } if err != nil { fmt.Fprintf(os.Stderr, "cover: %v\n", err) os.Exit(2) } } // parseFlags sets the profile and counterStmt globals and performs validations. func parseFlags() error { profile = *htmlOut if *funcOut != "" { if profile != "" { return fmt.Errorf("too many options") } profile = *funcOut } // Must either display a profile or rewrite Go source. if (profile == "") == (*mode == "") { return fmt.Errorf("too many options") } if *varVar != "" && !token.IsIdentifier(*varVar) { return fmt.Errorf("-var: %q is not a valid identifier", *varVar) } if *mode != "" { switch *mode { case "set": counterStmt = setCounterStmt cmode = coverage.CtrModeSet case "count": counterStmt = incCounterStmt cmode = coverage.CtrModeCount case "atomic": counterStmt = atomicCounterStmt cmode = coverage.CtrModeAtomic case "regonly": counterStmt = nil cmode = coverage.CtrModeRegOnly case "testmain": counterStmt = nil cmode = coverage.CtrModeTestMain default: return fmt.Errorf("unknown -mode %v", *mode) } if flag.NArg() == 0 { return fmt.Errorf("missing source file(s)") } else { if *pkgcfg != "" { if *output != "" { return fmt.Errorf("please use '-outfilelist' flag instead of '-o'") } var err error if outputfiles, err = readOutFileList(*outfilelist); err != nil { return err } covervarsoutfile = outputfiles[0] outputfiles = outputfiles[1:] numInputs := len(flag.Args()) numOutputs := len(outputfiles) if numOutputs != numInputs { return fmt.Errorf("number of output files (%d) not equal to number of input files (%d)", numOutputs, numInputs) } if err := readPackageConfig(*pkgcfg); err != nil { return err } return nil } else { if *outfilelist != "" { return fmt.Errorf("'-outfilelist' flag applicable only when -pkgcfg used") } } if flag.NArg() == 1 { return nil } } } else if flag.NArg() == 0 { return nil } return fmt.Errorf("too many arguments") } func readOutFileList(path string) ([]string, error) { data, err := os.ReadFile(path) if err != nil { return nil, fmt.Errorf("error reading -outfilelist file %q: %v", path, err) } return strings.Split(strings.TrimSpace(string(data)), "\n"), nil } func readPackageConfig(path string) error { data, err := os.ReadFile(path) if err != nil { return fmt.Errorf("error reading pkgconfig file %q: %v", path, err) } if err := json.Unmarshal(data, &pkgconfig); err != nil { return fmt.Errorf("error reading pkgconfig file %q: %v", path, err) } switch pkgconfig.Granularity { case "perblock": cgran = coverage.CtrGranularityPerBlock case "perfunc": cgran = coverage.CtrGranularityPerFunc default: return fmt.Errorf(`%s: pkgconfig requires perblock/perfunc value`, path) } return nil } // Block represents the information about a basic block to be recorded in the analysis. // Note: Our definition of basic block is based on control structures; we don't break // apart && and ||. We could but it doesn't seem important enough to bother. type Block struct { startByte token.Pos endByte token.Pos numStmt int } // Package holds package-specific state. type Package struct { mdb *encodemeta.CoverageMetaDataBuilder counterLengths []int } // Function holds func-specific state. type Func struct { units []coverage.CoverableUnit counterVar string } // File is a wrapper for the state of a file used in the parser. // The basic parse tree walker is a method of this type. type File struct { fset *token.FileSet name string // Name of file. astFile *ast.File blocks []Block content []byte edit *edit.Buffer mdb *encodemeta.CoverageMetaDataBuilder fn Func pkg *Package } // findText finds text in the original source, starting at pos. // It correctly skips over comments and assumes it need not // handle quoted strings. // It returns a byte offset within f.src. func (f *File) findText(pos token.Pos, text string) int { b := []byte(text) start := f.offset(pos) i := start s := f.content for i < len(s) { if bytes.HasPrefix(s[i:], b) { return i } if i+2 <= len(s) && s[i] == '/' && s[i+1] == '/' { for i < len(s) && s[i] != '\n' { i++ } continue } if i+2 <= len(s) && s[i] == '/' && s[i+1] == '*' { for i += 2; ; i++ { if i+2 > len(s) { return 0 } if s[i] == '*' && s[i+1] == '/' { i += 2 break } } continue } i++ } return -1 } // Visit implements the ast.Visitor interface. func (f *File) Visit(node ast.Node) ast.Visitor { switch n := node.(type) { case *ast.BlockStmt: // If it's a switch or select, the body is a list of case clauses; don't tag the block itself. if len(n.List) > 0 { switch n.List[0].(type) { case *ast.CaseClause: // switch for _, n := range n.List { clause := n.(*ast.CaseClause) f.addCounters(clause.Colon+1, clause.Colon+1, clause.End(), clause.Body, false) } return f case *ast.CommClause: // select for _, n := range n.List { clause := n.(*ast.CommClause) f.addCounters(clause.Colon+1, clause.Colon+1, clause.End(), clause.Body, false) } return f } } f.addCounters(n.Lbrace, n.Lbrace+1, n.Rbrace+1, n.List, true) // +1 to step past closing brace. case *ast.IfStmt: if n.Init != nil { ast.Walk(f, n.Init) } ast.Walk(f, n.Cond) ast.Walk(f, n.Body) if n.Else == nil { return nil } // The elses are special, because if we have // if x { // } else if y { // } // we want to cover the "if y". To do this, we need a place to drop the counter, // so we add a hidden block: // if x { // } else { // if y { // } // } elseOffset := f.findText(n.Body.End(), "else") if elseOffset < 0 { panic("lost else") } f.edit.Insert(elseOffset+4, "{") f.edit.Insert(f.offset(n.Else.End()), "}") // We just created a block, now walk it. // Adjust the position of the new block to start after // the "else". That will cause it to follow the "{" // we inserted above. pos := f.fset.File(n.Body.End()).Pos(elseOffset + 4) switch stmt := n.Else.(type) { case *ast.IfStmt: block := &ast.BlockStmt{ Lbrace: pos, List: []ast.Stmt{stmt}, Rbrace: stmt.End(), } n.Else = block case *ast.BlockStmt: stmt.Lbrace = pos default: panic("unexpected node type in if") } ast.Walk(f, n.Else) return nil case *ast.SelectStmt: // Don't annotate an empty select - creates a syntax error. if n.Body == nil || len(n.Body.List) == 0 { return nil } case *ast.SwitchStmt: // Don't annotate an empty switch - creates a syntax error. if n.Body == nil || len(n.Body.List) == 0 { if n.Init != nil { ast.Walk(f, n.Init) } if n.Tag != nil { ast.Walk(f, n.Tag) } return nil } case *ast.TypeSwitchStmt: // Don't annotate an empty type switch - creates a syntax error. if n.Body == nil || len(n.Body.List) == 0 { if n.Init != nil { ast.Walk(f, n.Init) } ast.Walk(f, n.Assign) return nil } case *ast.FuncDecl: // Don't annotate functions with blank names - they cannot be executed. // Similarly for bodyless funcs. if n.Name.Name == "_" || n.Body == nil { return nil } fname := n.Name.Name // Skip AddUint32 and StoreUint32 if we're instrumenting // sync/atomic itself in atomic mode (out of an abundance of // caution), since as part of the instrumentation process we // add calls to AddUint32/StoreUint32, and we don't want to // somehow create an infinite loop. // // Note that in the current implementation (Go 1.20) both // routines are assembly stubs that forward calls to the // internal/runtime/atomic equivalents, hence the infinite // loop scenario is purely theoretical (maybe if in some // future implementation one of these functions might be // written in Go). See #57445 for more details. if atomicOnAtomic() && (fname == "AddUint32" || fname == "StoreUint32") { return nil } // Determine proper function or method name. if r := n.Recv; r != nil && len(r.List) == 1 { t := r.List[0].Type star := "" if p, _ := t.(*ast.StarExpr); p != nil { t = p.X star = "*" } if p, _ := t.(*ast.Ident); p != nil { fname = star + p.Name + "." + fname } } walkBody := true if *pkgcfg != "" { f.preFunc(n, fname) if pkgconfig.Granularity == "perfunc" { walkBody = false } } if walkBody { ast.Walk(f, n.Body) } if *pkgcfg != "" { flit := false f.postFunc(n, fname, flit, n.Body) } return nil case *ast.FuncLit: // For function literals enclosed in functions, just glom the // code for the literal in with the enclosing function (for now). if f.fn.counterVar != "" { return f } // Hack: function literals aren't named in the go/ast representation, // and we don't know what name the compiler will choose. For now, // just make up a descriptive name. pos := n.Pos() p := f.fset.File(pos).Position(pos) fname := fmt.Sprintf("func.L%d.C%d", p.Line, p.Column) if *pkgcfg != "" { f.preFunc(n, fname) } if pkgconfig.Granularity != "perfunc" { ast.Walk(f, n.Body) } if *pkgcfg != "" { flit := true f.postFunc(n, fname, flit, n.Body) } return nil } return f } func mkCounterVarName(idx int) string { return fmt.Sprintf("%s_%d", *varVar, idx) } func mkPackageIdVar() string { return *varVar + "P" } func mkMetaVar() string { return *varVar + "M" } func mkPackageIdExpression() string { ppath := pkgconfig.PkgPath if hcid := coverage.HardCodedPkgID(ppath); hcid != -1 { return fmt.Sprintf("uint32(%d)", uint32(hcid)) } return mkPackageIdVar() } func (f *File) preFunc(fn ast.Node, fname string) { f.fn.units = f.fn.units[:0] // create a new counter variable for this function. cv := mkCounterVarName(len(f.pkg.counterLengths)) f.fn.counterVar = cv } func (f *File) postFunc(fn ast.Node, funcname string, flit bool, body *ast.BlockStmt) { // Tack on single counter write if we are in "perfunc" mode. singleCtr := "" if pkgconfig.Granularity == "perfunc" { singleCtr = "; " + f.newCounter(fn.Pos(), fn.Pos(), 1) } // record the length of the counter var required. nc := len(f.fn.units) + coverage.FirstCtrOffset f.pkg.counterLengths = append(f.pkg.counterLengths, nc) // FIXME: for windows, do we want "\" and not "/"? Need to test here. // Currently filename is formed as packagepath + "/" + basename. fnpos := f.fset.Position(fn.Pos()) ppath := pkgconfig.PkgPath filename := ppath + "/" + filepath.Base(fnpos.Filename) // The convention for cmd/cover is that if the go command that // kicks off coverage specifies a local import path (e.g. "go test // -cover ./thispackage"), the tool will capture full pathnames // for source files instead of relative paths, which tend to work // more smoothly for "go tool cover -html". See also issue #56433 // for more details. if pkgconfig.Local { filename = f.name } // Hand off function to meta-data builder. fd := coverage.FuncDesc{ Funcname: funcname, Srcfile: filename, Units: f.fn.units, Lit: flit, } funcId := f.mdb.AddFunc(fd) hookWrite := func(cv string, which int, val string) string { return fmt.Sprintf("%s[%d] = %s", cv, which, val) } if *mode == "atomic" { hookWrite = func(cv string, which int, val string) string { return fmt.Sprintf("%sStoreUint32(&%s[%d], %s)", atomicPackagePrefix(), cv, which, val) } } // Generate the registration hook sequence for the function. This // sequence looks like // // counterVar[0] = // counterVar[1] = pkgId // counterVar[2] = fnId // cv := f.fn.counterVar regHook := hookWrite(cv, 0, strconv.Itoa(len(f.fn.units))) + " ; " + hookWrite(cv, 1, mkPackageIdExpression()) + " ; " + hookWrite(cv, 2, strconv.Itoa(int(funcId))) + singleCtr // Insert the registration sequence into the function. We want this sequence to // appear before any counter updates, so use a hack to ensure that this edit // applies before the edit corresponding to the prolog counter update. boff := f.offset(body.Pos()) ipos := f.fset.File(body.Pos()).Pos(boff) ip := f.offset(ipos) f.edit.Replace(ip, ip+1, string(f.content[ipos-1])+regHook+" ; ") f.fn.counterVar = "" } func annotate(names []string) { var p *Package if *pkgcfg != "" { pp := pkgconfig.PkgPath pn := pkgconfig.PkgName mp := pkgconfig.ModulePath mdb, err := encodemeta.NewCoverageMetaDataBuilder(pp, pn, mp) if err != nil { log.Fatalf("creating coverage meta-data builder: %v\n", err) } p = &Package{ mdb: mdb, } } // TODO: process files in parallel here if it matters. for k, name := range names { if strings.ContainsAny(name, "\r\n") { // annotateFile uses '//line' directives, which don't permit newlines. log.Fatalf("cover: input path contains newline character: %q", name) } fd := os.Stdout isStdout := true if *pkgcfg != "" { var err error fd, err = os.Create(outputfiles[k]) if err != nil { log.Fatalf("cover: %s", err) } isStdout = false } else if *output != "" { var err error fd, err = os.Create(*output) if err != nil { log.Fatalf("cover: %s", err) } isStdout = false } p.annotateFile(name, fd) if !isStdout { if err := fd.Close(); err != nil { log.Fatalf("cover: %s", err) } } } if *pkgcfg != "" { fd, err := os.Create(covervarsoutfile) if err != nil { log.Fatalf("cover: %s", err) } p.emitMetaData(fd) if err := fd.Close(); err != nil { log.Fatalf("cover: %s", err) } } } func (p *Package) annotateFile(name string, fd io.Writer) { fset := token.NewFileSet() content, err := os.ReadFile(name) if err != nil { log.Fatalf("cover: %s: %s", name, err) } parsedFile, err := parser.ParseFile(fset, name, content, parser.ParseComments) if err != nil { log.Fatalf("cover: %s: %s", name, err) } file := &File{ fset: fset, name: name, content: content, edit: edit.NewBuffer(content), astFile: parsedFile, } if p != nil { file.mdb = p.mdb file.pkg = p } if *mode == "atomic" { // Add import of sync/atomic immediately after package clause. // We do this even if there is an existing import, because the // existing import may be shadowed at any given place we want // to refer to it, and our name (_cover_atomic_) is less likely to // be shadowed. The one exception is if we're visiting the // sync/atomic package itself, in which case we can refer to // functions directly without an import prefix. See also #57445. if pkgconfig.PkgPath != "sync/atomic" { file.edit.Insert(file.offset(file.astFile.Name.End()), fmt.Sprintf("; import %s %q", atomicPackageName, atomicPackagePath)) } } if pkgconfig.PkgName == "main" { file.edit.Insert(file.offset(file.astFile.Name.End()), "; import _ \"runtime/coverage\"") } if counterStmt != nil { ast.Walk(file, file.astFile) } newContent := file.edit.Bytes() if strings.ContainsAny(name, "\r\n") { // This should have been checked by the caller already, but we double check // here just to be sure we haven't missed a caller somewhere. panic(fmt.Sprintf("annotateFile: name contains unexpected newline character: %q", name)) } fmt.Fprintf(fd, "//line %s:1:1\n", name) fd.Write(newContent) // After printing the source tree, add some declarations for the // counters etc. We could do this by adding to the tree, but it's // easier just to print the text. file.addVariables(fd) // Emit a reference to the atomic package to avoid // import and not used error when there's no code in a file. if *mode == "atomic" { fmt.Fprintf(fd, "\nvar _ = %sLoadUint32\n", atomicPackagePrefix()) } } // setCounterStmt returns the expression: __count[23] = 1. func setCounterStmt(f *File, counter string) string { return fmt.Sprintf("%s = 1", counter) } // incCounterStmt returns the expression: __count[23]++. func incCounterStmt(f *File, counter string) string { return fmt.Sprintf("%s++", counter) } // atomicCounterStmt returns the expression: atomic.AddUint32(&__count[23], 1) func atomicCounterStmt(f *File, counter string) string { return fmt.Sprintf("%sAddUint32(&%s, 1)", atomicPackagePrefix(), counter) } // newCounter creates a new counter expression of the appropriate form. func (f *File) newCounter(start, end token.Pos, numStmt int) string { var stmt string if *pkgcfg != "" { slot := len(f.fn.units) + coverage.FirstCtrOffset if f.fn.counterVar == "" { panic("internal error: counter var unset") } stmt = counterStmt(f, fmt.Sprintf("%s[%d]", f.fn.counterVar, slot)) stpos := f.fset.Position(start) enpos := f.fset.Position(end) stpos, enpos = dedup(stpos, enpos) unit := coverage.CoverableUnit{ StLine: uint32(stpos.Line), StCol: uint32(stpos.Column), EnLine: uint32(enpos.Line), EnCol: uint32(enpos.Column), NxStmts: uint32(numStmt), } f.fn.units = append(f.fn.units, unit) } else { stmt = counterStmt(f, fmt.Sprintf("%s.Count[%d]", *varVar, len(f.blocks))) f.blocks = append(f.blocks, Block{start, end, numStmt}) } return stmt } // addCounters takes a list of statements and adds counters to the beginning of // each basic block at the top level of that list. For instance, given // // S1 // if cond { // S2 // } // S3 // // counters will be added before S1 and before S3. The block containing S2 // will be visited in a separate call. // TODO: Nested simple blocks get unnecessary (but correct) counters func (f *File) addCounters(pos, insertPos, blockEnd token.Pos, list []ast.Stmt, extendToClosingBrace bool) { // Special case: make sure we add a counter to an empty block. Can't do this below // or we will add a counter to an empty statement list after, say, a return statement. if len(list) == 0 { f.edit.Insert(f.offset(insertPos), f.newCounter(insertPos, blockEnd, 0)+";") return } // Make a copy of the list, as we may mutate it and should leave the // existing list intact. list = append([]ast.Stmt(nil), list...) // We have a block (statement list), but it may have several basic blocks due to the // appearance of statements that affect the flow of control. for { // Find first statement that affects flow of control (break, continue, if, etc.). // It will be the last statement of this basic block. var last int end := blockEnd for last = 0; last < len(list); last++ { stmt := list[last] end = f.statementBoundary(stmt) if f.endsBasicSourceBlock(stmt) { // If it is a labeled statement, we need to place a counter between // the label and its statement because it may be the target of a goto // and thus start a basic block. That is, given // foo: stmt // we need to create // foo: ; stmt // and mark the label as a block-terminating statement. // The result will then be // foo: COUNTER[n]++; stmt // However, we can't do this if the labeled statement is already // a control statement, such as a labeled for. if label, isLabel := stmt.(*ast.LabeledStmt); isLabel && !f.isControl(label.Stmt) { newLabel := *label newLabel.Stmt = &ast.EmptyStmt{ Semicolon: label.Stmt.Pos(), Implicit: true, } end = label.Pos() // Previous block ends before the label. list[last] = &newLabel // Open a gap and drop in the old statement, now without a label. list = append(list, nil) copy(list[last+1:], list[last:]) list[last+1] = label.Stmt } last++ extendToClosingBrace = false // Block is broken up now. break } } if extendToClosingBrace { end = blockEnd } if pos != end { // Can have no source to cover if e.g. blocks abut. f.edit.Insert(f.offset(insertPos), f.newCounter(pos, end, last)+";") } list = list[last:] if len(list) == 0 { break } pos = list[0].Pos() insertPos = pos } } // hasFuncLiteral reports the existence and position of the first func literal // in the node, if any. If a func literal appears, it usually marks the termination // of a basic block because the function body is itself a block. // Therefore we draw a line at the start of the body of the first function literal we find. // TODO: what if there's more than one? Probably doesn't matter much. func hasFuncLiteral(n ast.Node) (bool, token.Pos) { if n == nil { return false, 0 } var literal funcLitFinder ast.Walk(&literal, n) return literal.found(), token.Pos(literal) } // statementBoundary finds the location in s that terminates the current basic // block in the source. func (f *File) statementBoundary(s ast.Stmt) token.Pos { // Control flow statements are easy. switch s := s.(type) { case *ast.BlockStmt: // Treat blocks like basic blocks to avoid overlapping counters. return s.Lbrace case *ast.IfStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } found, pos = hasFuncLiteral(s.Cond) if found { return pos } return s.Body.Lbrace case *ast.ForStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } found, pos = hasFuncLiteral(s.Cond) if found { return pos } found, pos = hasFuncLiteral(s.Post) if found { return pos } return s.Body.Lbrace case *ast.LabeledStmt: return f.statementBoundary(s.Stmt) case *ast.RangeStmt: found, pos := hasFuncLiteral(s.X) if found { return pos } return s.Body.Lbrace case *ast.SwitchStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } found, pos = hasFuncLiteral(s.Tag) if found { return pos } return s.Body.Lbrace case *ast.SelectStmt: return s.Body.Lbrace case *ast.TypeSwitchStmt: found, pos := hasFuncLiteral(s.Init) if found { return pos } return s.Body.Lbrace } // If not a control flow statement, it is a declaration, expression, call, etc. and it may have a function literal. // If it does, that's tricky because we want to exclude the body of the function from this block. // Draw a line at the start of the body of the first function literal we find. // TODO: what if there's more than one? Probably doesn't matter much. found, pos := hasFuncLiteral(s) if found { return pos } return s.End() } // endsBasicSourceBlock reports whether s changes the flow of control: break, if, etc., // or if it's just problematic, for instance contains a function literal, which will complicate // accounting due to the block-within-an expression. func (f *File) endsBasicSourceBlock(s ast.Stmt) bool { switch s := s.(type) { case *ast.BlockStmt: // Treat blocks like basic blocks to avoid overlapping counters. return true case *ast.BranchStmt: return true case *ast.ForStmt: return true case *ast.IfStmt: return true case *ast.LabeledStmt: return true // A goto may branch here, starting a new basic block. case *ast.RangeStmt: return true case *ast.SwitchStmt: return true case *ast.SelectStmt: return true case *ast.TypeSwitchStmt: return true case *ast.ExprStmt: // Calls to panic change the flow. // We really should verify that "panic" is the predefined function, // but without type checking we can't and the likelihood of it being // an actual problem is vanishingly small. if call, ok := s.X.(*ast.CallExpr); ok { if ident, ok := call.Fun.(*ast.Ident); ok && ident.Name == "panic" && len(call.Args) == 1 { return true } } } found, _ := hasFuncLiteral(s) return found } // isControl reports whether s is a control statement that, if labeled, cannot be // separated from its label. func (f *File) isControl(s ast.Stmt) bool { switch s.(type) { case *ast.ForStmt, *ast.RangeStmt, *ast.SwitchStmt, *ast.SelectStmt, *ast.TypeSwitchStmt: return true } return false } // funcLitFinder implements the ast.Visitor pattern to find the location of any // function literal in a subtree. type funcLitFinder token.Pos func (f *funcLitFinder) Visit(node ast.Node) (w ast.Visitor) { if f.found() { return nil // Prune search. } switch n := node.(type) { case *ast.FuncLit: *f = funcLitFinder(n.Body.Lbrace) return nil // Prune search. } return f } func (f *funcLitFinder) found() bool { return token.Pos(*f) != token.NoPos } // Sort interface for []block1; used for self-check in addVariables. type block1 struct { Block index int } type blockSlice []block1 func (b blockSlice) Len() int { return len(b) } func (b blockSlice) Less(i, j int) bool { return b[i].startByte < b[j].startByte } func (b blockSlice) Swap(i, j int) { b[i], b[j] = b[j], b[i] } // offset translates a token position into a 0-indexed byte offset. func (f *File) offset(pos token.Pos) int { return f.fset.Position(pos).Offset } // addVariables adds to the end of the file the declarations to set up the counter and position variables. func (f *File) addVariables(w io.Writer) { if *pkgcfg != "" { return } // Self-check: Verify that the instrumented basic blocks are disjoint. t := make([]block1, len(f.blocks)) for i := range f.blocks { t[i].Block = f.blocks[i] t[i].index = i } sort.Sort(blockSlice(t)) for i := 1; i < len(t); i++ { if t[i-1].endByte > t[i].startByte { fmt.Fprintf(os.Stderr, "cover: internal error: block %d overlaps block %d\n", t[i-1].index, t[i].index) // Note: error message is in byte positions, not token positions. fmt.Fprintf(os.Stderr, "\t%s:#%d,#%d %s:#%d,#%d\n", f.name, f.offset(t[i-1].startByte), f.offset(t[i-1].endByte), f.name, f.offset(t[i].startByte), f.offset(t[i].endByte)) } } // Declare the coverage struct as a package-level variable. fmt.Fprintf(w, "\nvar %s = struct {\n", *varVar) fmt.Fprintf(w, "\tCount [%d]uint32\n", len(f.blocks)) fmt.Fprintf(w, "\tPos [3 * %d]uint32\n", len(f.blocks)) fmt.Fprintf(w, "\tNumStmt [%d]uint16\n", len(f.blocks)) fmt.Fprintf(w, "} {\n") // Initialize the position array field. fmt.Fprintf(w, "\tPos: [3 * %d]uint32{\n", len(f.blocks)) // A nice long list of positions. Each position is encoded as follows to reduce size: // - 32-bit starting line number // - 32-bit ending line number // - (16 bit ending column number << 16) | (16-bit starting column number). for i, block := range f.blocks { start := f.fset.Position(block.startByte) end := f.fset.Position(block.endByte) start, end = dedup(start, end) fmt.Fprintf(w, "\t\t%d, %d, %#x, // [%d]\n", start.Line, end.Line, (end.Column&0xFFFF)<<16|(start.Column&0xFFFF), i) } // Close the position array. fmt.Fprintf(w, "\t},\n") // Initialize the position array field. fmt.Fprintf(w, "\tNumStmt: [%d]uint16{\n", len(f.blocks)) // A nice long list of statements-per-block, so we can give a conventional // valuation of "percent covered". To save space, it's a 16-bit number, so we // clamp it if it overflows - won't matter in practice. for i, block := range f.blocks { n := block.numStmt if n > 1<<16-1 { n = 1<<16 - 1 } fmt.Fprintf(w, "\t\t%d, // %d\n", n, i) } // Close the statements-per-block array. fmt.Fprintf(w, "\t},\n") // Close the struct initialization. fmt.Fprintf(w, "}\n") } // It is possible for positions to repeat when there is a line // directive that does not specify column information and the input // has not been passed through gofmt. // See issues #27530 and #30746. // Tests are TestHtmlUnformatted and TestLineDup. // We use a map to avoid duplicates. // pos2 is a pair of token.Position values, used as a map key type. type pos2 struct { p1, p2 token.Position } // seenPos2 tracks whether we have seen a token.Position pair. var seenPos2 = make(map[pos2]bool) // dedup takes a token.Position pair and returns a pair that does not // duplicate any existing pair. The returned pair will have the Offset // fields cleared. func dedup(p1, p2 token.Position) (r1, r2 token.Position) { key := pos2{ p1: p1, p2: p2, } // We want to ignore the Offset fields in the map, // since cover uses only file/line/column. key.p1.Offset = 0 key.p2.Offset = 0 for seenPos2[key] { key.p2.Column++ } seenPos2[key] = true return key.p1, key.p2 } func (p *Package) emitMetaData(w io.Writer) { if *pkgcfg == "" { return } // If the "EmitMetaFile" path has been set, invoke a helper // that will write out a pre-cooked meta-data file for this package // to the specified location, in effect simulating the execution // of a test binary that doesn't do any testing to speak of. if pkgconfig.EmitMetaFile != "" { p.emitMetaFile(pkgconfig.EmitMetaFile) } // Something went wrong if regonly/testmain mode is in effect and // we have instrumented functions. if counterStmt == nil && len(p.counterLengths) != 0 { panic("internal error: seen functions with regonly/testmain") } // Emit package name. fmt.Fprintf(w, "\npackage %s\n\n", pkgconfig.PkgName) // Emit package ID var. fmt.Fprintf(w, "\nvar %sP uint32\n", *varVar) // Emit all of the counter variables. for k := range p.counterLengths { cvn := mkCounterVarName(k) fmt.Fprintf(w, "var %s [%d]uint32\n", cvn, p.counterLengths[k]) } // Emit encoded meta-data. var sws slicewriter.WriteSeeker digest, err := p.mdb.Emit(&sws) if err != nil { log.Fatalf("encoding meta-data: %v", err) } p.mdb = nil fmt.Fprintf(w, "var %s = [...]byte{\n", mkMetaVar()) payload := sws.BytesWritten() for k, b := range payload { fmt.Fprintf(w, " 0x%x,", b) if k != 0 && k%8 == 0 { fmt.Fprintf(w, "\n") } } fmt.Fprintf(w, "}\n") fixcfg := covcmd.CoverFixupConfig{ Strategy: "normal", MetaVar: mkMetaVar(), MetaLen: len(payload), MetaHash: fmt.Sprintf("%x", digest), PkgIdVar: mkPackageIdVar(), CounterPrefix: *varVar, CounterGranularity: pkgconfig.Granularity, CounterMode: *mode, } fixdata, err := json.Marshal(fixcfg) if err != nil { log.Fatalf("marshal fixupcfg: %v", err) } if err := os.WriteFile(pkgconfig.OutConfig, fixdata, 0666); err != nil { log.Fatalf("error writing %s: %v", pkgconfig.OutConfig, err) } } // atomicOnAtomic returns true if we're instrumenting // the sync/atomic package AND using atomic mode. func atomicOnAtomic() bool { return *mode == "atomic" && pkgconfig.PkgPath == "sync/atomic" } // atomicPackagePrefix returns the import path prefix used to refer to // our special import of sync/atomic; this is either set to the // constant atomicPackageName plus a dot or the empty string if we're // instrumenting the sync/atomic package itself. func atomicPackagePrefix() string { if atomicOnAtomic() { return "" } return atomicPackageName + "." } func (p *Package) emitMetaFile(outpath string) { // Open output file. of, err := os.OpenFile(outpath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0666) if err != nil { log.Fatalf("opening covmeta %s: %v", outpath, err) } if len(p.counterLengths) == 0 { // This corresponds to the case where we have no functions // in the package to instrument. Leave the file empty file if // this happens. if err = of.Close(); err != nil { log.Fatalf("closing meta-data file: %v", err) } return } // Encode meta-data. var sws slicewriter.WriteSeeker digest, err := p.mdb.Emit(&sws) if err != nil { log.Fatalf("encoding meta-data: %v", err) } payload := sws.BytesWritten() blobs := [][]byte{payload} // Write meta-data file directly. mfw := encodemeta.NewCoverageMetaFileWriter(outpath, of) err = mfw.Write(digest, blobs, cmode, cgran) if err != nil { log.Fatalf("writing meta-data file: %v", err) } if err = of.Close(); err != nil { log.Fatalf("closing meta-data file: %v", err) } }